Драйвер для светодиодов: что это за «зверь» и с чем его «едят. Что такое драйвер для светодиодов и как подобрать нужный Обзор типовых китайских источников питания лед драйверов

должны подключаться к электросети через специальные устройства, стабилизирующие ток – драйверы для светодиодов. Это преобразователи напряжения переменного тока 220 В в постоянный ток с необходимыми для работы световых диодов параметрами. Только при их наличии можно гарантировать стабильную работу, длительный срок эксплуатации LED-источников, заявленную яркость, защиту от короткого замыкания и перегрева. Выбор драйверов небольшой, поэтому лучше сначала приобрести преобразователь, а потом под него подбирать . Собрать устройство можно самостоятельно по простой схеме. О том, что такое драйвер для светодиода, какой купить и как правильно его использовать, читайте в нашем обзоре.

– это полупроводниковые элементы. За яркость их свечения отвечает ток, а не напряжение. Чтобы они работали, нужен стабильный ток, определенного значения. При p-n переходе падает напряжение на одинаковое количество вольт для каждого элемента. Обеспечить оптимальную работу LED-источников с учетом этих параметров – задача драйвера.

Какая именно нужна мощность и насколько падает при p-n переходе, должно быть указано в паспортных данных светодиодного прибора. Диапазон параметров преобразователя должен вписываться в эти значения.


По сути, драйвер – это . Но основной выходной параметр этого устройства – стабилизированный ток. Их производят по принципу ШИМ-преобразования с использованием специальных микросхем или на базе из транзисторов. Последние называют простыми.

Преобразователь питается от обычной сети, на выходе выдает напряжение заданного диапазона, которое указывается в виде двух чисел: минимального и максимального значения. Обычно от 3 В до нескольких десятков. Например, с помощью преобразователя с напряжением на выходе 9÷21 В и мощностью 780 мА можно обеспечить работу 3÷6 , каждый из которых создает падение в сети на 3 В.

Таким образом, драйвер – это устройство, преобразующее ток из сети 220 В под заданные параметры осветительного прибора, обеспечивающее его нормальную работу и долгий срок эксплуатации.

Где применяют

Спрос на преобразователи растет вместе с популярностью светодиодов. – это экономичные, мощные и компактные приборы. Их применяют в разнообразных целях:

  • для фонарей ;
  • в быту;
  • для обустройства ;
  • в автомобильных и велосипедных фарах;
  • в небольших фонарях;

При подключении в сеть 220 В всегда нужен драйвер, в случае использования постоянного напряжения допустимо обойтись резистором.


Как работает устройство

Принцип работы LED-драйверов для светодиодов заключается в поддержании заданного тока на выходе, независимо от изменения напряжения. Ток, проходящий через сопротивления внутри прибора, стабилизируется и приобретает нужную частоту. Затем проходит через выпрямляющий диодный мост. На выходе получаем стабильный прямой ток, достаточный для работы определенного количества светодиодов.

Основные характеристики драйверов

Ключевые параметры приборов для преобразования тока, на которые нужно опираться при выборе:

  1. Номинальная мощность устройства. Она указана в диапазоне. Максимальное значение обязательно должно быть немного больше, чем потребляемая мощность, подключаемого осветительного прибора.
  2. Напряжение на выходе. Значение должно быть больше или равно общей сумме падения напряжения на каждом элементе схемы.
  3. Номинальный ток. Должен соответствовать мощности прибора, чтобы обеспечивать достаточную яркость.

В зависимости от этих характеристик, определяют какие LED-источники можно подключить при помощи конкретного драйвера.

Виды преобразователей тока по типу устройства

Производятся драйверы двух типов: линейные и импульсные. У них одна функция, но сфера применения, технические особенности и стоимость различаются. Сравнение преобразователей разных типов представлено в таблице:

Тип устройства Технические характеристики Плюсы Минусы Сфера применения

Генератор тока на транзисторе с p-каналом, плавно стабилизирует ток при переменном напряжении Не создает помех, недорогой КПД менее 80%, сильно нагревается Маломощные светодиодные светильники, ленты, фонарики

Работает на основе широтно-импульсной модуляции Высокий КПД (до 95%), подходит для мощных приборов, продлевает срок службы элементов Создает электромагнитные помехи Тюнинг автомобилей, уличное освещение, бытовые LED-источники

Как подобрать драйвер для светодиодов и рассчитать его технические параметры

Драйвер для светодиодной ленты не подойдет для мощного уличного фонаря и наоборот, поэтому необходимо как можно точнее рассчитать основные параметры устройства и учесть условия эксплуатации.

Параметр От чего зависит Как рассчитать
Расчет мощности устройства Определяется мощностью всех подключаемых светодиодов Рассчитывается по формуле P = PLED-источника × n , где P – это мощность драйвера; PLED-источника – мощность одного подключаемого элемента; n – количество элементов. Для запаса мощности 30% нужно P умножить на 1,3. Полученное значение – это максимальная мощность драйвера, необходимая для подключения осветительного прибора
Расчет напряжения на выходе Определяется падением напряжения на каждом элементе Величина зависит от цвета свечения элементов, она указывается на самом устройстве или на упаковке. Например, к драйверу 12 В можно подключить 9 зеленых или 16 красных светодиодов.
Расчет тока Зависит от мощности и яркости светодиодов Определяется параметрами, подключаемого устройства

Преобразователи выпускаются в корпусе и без. Первые выглядят более эстетичными и имеют защиту от влаги и пыли, вторые используются при скрытом монтаже и стоят дешевле. Еще одна характеристика, которую необходимо учесть – допустимая температура эксплуатации. Для линейных и импульсных преобразователей она разная.

Важно! На упаковке с устройством должны быть указаны его основные параметры и производитель.


Способы подключения преобразователей тока

Светодиоды можно подключить к устройству двумя способами: параллельно (несколькими цепочками с одинаковым количеством элементов) и последовательно (один за одним в одной цепи).

Для соединения 6 элементов, падение напряжения которых составляет 2 В, параллельно в две линии понадобится драйвер 6 В на 600 мА. А при подключении последовательно преобразователь должен быть рассчитан на 12 В и 300 мА.

Последовательное подключение лучше тем, что все светодиоды будут светиться одинаково, тогда как при параллельном соединении яркость линий может различаться. При последовательном соединении большого количества элементов потребуется драйвер с большим выходным напряжением.

Диммируемые преобразователи тока для светодиодов

– это регулирование интенсивности света, исходящего от осветительного прибора. Диммируемые драйверы для позволяют изменять входные и выходные параметры тока. За счет этого увеличивается или уменьшается яркость свечения светодиодов. При использовании регулирования, возможно изменение цвета свечения. Если мощность меньше, то белые элементы могут стать желтыми, если больше, то синими.


Китайские драйверы: стоит ли экономить

Драйверы выпускаются в Китае в огромном количестве. Они отличаются низкой стоимостью, поэтому довольно востребованы. Имеют гальваническую развязку. Их технические параметры нередко завышены, поэтому при покупке дешевого устройства стоит это учесть.

Чаще всего это импульсные преобразователи, с мощностью 350÷700 мА. Далеко не всегда они имеют корпус, что даже удобно, если прибор приобретается с целью экспериментирования или обучения.

Недостатки китайской продукции:

  • в качестве основы используются простые и дешевые микросхемы;
  • устройства не имеют защиты от колебаний в сети и перегрева;
  • создают радиопомехи;
  • создают на выходе высокоуровневую пульсацию;
  • служат недолго и не имеют гарантии.

Не все китайские драйверы плохие, выпускаются и более надежные устройства, например, на базе PT4115. Их можно применять для подключения бытовых LED-источников, фонариков, лент.

Срок службы драйверов

Срок эксплуатации лед драйвера для светодиодных светильников зависит от внешних условий и изначального качества устройства. Ориентировочный срок исправной службы драйвера от 20 до 100 тыс. часов.

Повлиять на срок службы могут такие факторы:

  • перепады температурного режима;
  • высокая влажность;
  • скачки напряжения;
  • неполная загруженность устройства (если драйвер рассчитан на 100 Вт, а использует 50 Вт, напряжение возвращается обратно, от чего возникает перегрузка).

Известные производители дают гарантию на драйверы, в среднем на 30 тыс. часов. Но если устройство использовалось неправильно, то ответственность несет покупатель. Если LED-источник не включается или , возможно, проблема в преобразователе, неправильном соединении, или неисправности самого осветительного прибора.

Как проверить драйвер для светодиодов на работоспособность смотрите в видео ниже:

Схема драйверов для светодиодов с регулятором яркости на базе РТ4115 своими руками

Простой преобразователь тока можно собрать на базе готовой китайской микросхемы PT4115. Она является достаточно надежной для применения. Характеристики микросхемы:

  • КПД до 97%;
  • есть вывод для устройства, регулирующего яркость;
  • защищена от разрывов нагрузки;
  • максимальное отклонение стабилизации 5%;
  • входное напряжение 6÷30 В;
  • мощность на выходе 1,2 А.

Микросхема подходит для питания LED-источника свыше 1 Вт. Имеет минимум компонентов обвязки.

Расшифровка выходов микросхемы:

  • SW – выходной переключатель;
  • DIM – диммирование;
  • GND – сигнальный и питающий элемент;
  • CIN – конденсатор
  • CSN – датчик тока;
  • VIN – напряжение питания.

Собрать драйвер на базе этой микросхемы может даже начинающий мастер.


Схема драйвера светодиодной лампы 220 В

Стабилизатор тока в случае со устанавливается в цоколе прибора. И выполняется на базе недорогих микросхем, например, СРС9909. Такие лампы обязательно оснащаются системой охлаждения. Служат они намного дольше, чем любые другие, но лучше отдавать предпочтение проверенным производителям, так как в китайских заметна ручная пайка, асимметрия, отсутствие термопасты и прочие недостатки, снижающие срок службы.


Как изготовить драйвер для светодиодов своими руками

Устройство можно сделать из любого ненужного зарядного устройства для телефона. Стоит внести лишь минимальные усовершенствования и микросхему можно подключать к светодиодам. Его достаточно для питания 3 элементов по 1 Вт. Для подключения более мощного источника можно использовать платы от люминесцентных ламп.

Важно! Во время работы необходимо соблюдать технику безопасности. Про прикосновении к оголенным частям возможен удар током как до 400 В.

Фото Этап сборки драйвера из зарядного устройства

Снять корпус с зарядного устройства.

При помощи паяльника убрать резистор, который ограничивает напряжение, подаваемое к телефону.

Установить на его место подстроечный резистор, пока его нужно выставить на 5 кОм.

Последовательным соединением припаять светодиоды на выходной канал устройства.

Убрать входные каналы паяльником, на их место припаять сетевой шнур для подключения к сети 220 В.

Проверить работоспособность схемы, установить регулятором на подстроечном резисторе нужное напряжение, чтобы светодиоды светили ярко, но не изменили цвет.

Пример схемы драйвера для светодиодов от сети 220 В

Драйверы для светодиодов: где купить и сколько стоят

Приобрести стабилизаторы для светодиодных ламп и микросхемы к ним можно в магазине радиодеталей, электротехники и на многих торговых интернет-площадках. Последний вариант – самый экономичный. Стоимость устройства зависит от его технических характеристик, типа и производителя. Средние цены на некоторые виды драйверов приведены в таблице ниже.

Светодиоды, в последние годы серьезно потеснившие все остальные источники света, сегодня можно встретить повсеместно. Они используются в квартирах и офисах, освещают улицы, украшают здания и интерьеры. Но для правильной работы полупроводникового источника света необходим качественный и надежный драйвер для светодиодов. Сегодня мы поговорим об этом исключительно важном узле и разберемся, почему этот драйвер так необходим, как он работает, и даже попытаемся сделать led driver своими руками.

Что такое драйвер и зачем он нужен

Если заглянуть в англо-русский словарь, то можно узнать, что драйвер – это буквально «водитель» (driver – водитель, англ.). Откуда такое странное название и что он водит? Для того чтобы в этом разобраться, немного отвлечемся и поговорим о светодиодах.

Светодиод (led) – полупроводниковый прибор, способный излучать свет под воздействием приложенного к нему напряжения. Причем для правильной работы полупроводника напряжение, обеспечивающее оптимальный ток через кристалл, должно быть постоянным и строго стабилизированным. Особенно это касается мощных светодиодов, которые крайне критически относятся к всевозможным перепадам и скачкам питающего тока. Стоит питанию диода чуть снизиться, как упадет ток и, как следствие, уменьшится светоотдача. При малейшем превышении нормальной величины тока полупроводник мгновенно перегревается и сгорает.

Основное назначение драйвера – обеспечить светоизлучающий диод необходимым для его нормальной работы током. Таким образом, led драйвер – это, по сути, блок питания для светодиодов, их «водитель», обеспечивающий длительную и качественную работу полупроводникового осветителя.

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Ты не встретишь ни одного осветительного прибора, имеющего в своем составе мощный светодиод, который бы не имел драйвера. Поэтому так важно разобраться, какими бывают драйверы, как они работают и какими характеристиками должны обладать.

Виды светодиодных драйверов

Все драйверы для светодиодов можно разделить по принципу стабилизации тока. На сегодняшний день таких принципов два:

  1. Линейный.
  2. Импульсный.

Линейный стабилизатор

Предположим, в нашем распоряжении мощный светодиод, который нужно зажечь. Соберем простейшую схему:


Схема, поясняющая линейный принцип регулировки тока

Выставляем резистором R, выполняющим роль ограничителя, нужное значение тока – светодиод горит. Еcли напряжение питания изменилось (к примеру, батарея садится), поворачиваем движок резистора и восстанавливаем необходимый ток. Если увеличилось, то таким же образом ток уменьшаем. Именно это и делает простейший линейный стабилизатор: следит за током через светодиод и при необходимости «крутит ручку» резистора. Только делает он это очень быстро, успевая реагировать на малейшее отклонение тока от заданной величины. Конечно, никакой ручки у драйвера нет, ее роль выполняет транзистор, но суть пояснения от этого не меняется.

В чем недостаток линейной схемы стабилизатора тока? Дело в том, что через регулирующий элемент тоже течет ток и бесполезно рассеивает мощность, которая просто греет воздух. Причем чем входное напряжение больше, тем выше потери. Для светодиодов с небольшим рабочим током такая схема годится и успешно используется, но мощные полупроводники линейным драйвером питать себе дороже: драйверы могут съедать больше энергии, чем сам осветитель.

К преимуществам такой схемы питания можно отнести относительную простоту схемотехники и невысокую стоимость драйвера, сочетающуюся с высокой надежностью.


Линейный драйвер для питания светодиода в карманном фонаре

Импульсная стабилизация

Перед нами тот же светодиод, но схему питания соберем несколько иную:


Схема, поясняющая принцип работы широтно-импульсного стабилизатора

Теперь вместо резистора у нас кнопка КН и добавлен накопительный конденсатор С. Подаем напряжение на схему и нажимаем кнопку. Конденсатор начинает заряжаться, и при достижении на нем рабочего напряжения светодиод загорается. Если продолжать держать кнопку нажатой, то ток превысит допустимую величину, и полупроводник сгорит. Отпускаем кнопку. Конденсатор продолжает питать светодиод и постепенно разряжается. Как только ток опустится ниже допустимого для светодиода значения, снова нажимаем кнопку, подпитывая конденсатор.

Вот так сидим и периодически жмем кнопку, поддерживая нормальный режим работы светодиода. Чем выше питающее напряжение, тем нажатия будут короче. Чем напряжение ниже, тем кнопку придется держать нажатой дольше. Это и есть принцип широтно-импульсной модуляции. Драйвер следит за током через светодиод и управляет ключом, собранным на транзисторе или тиристоре. Делает он это очень быстро (десятки и даже сотни тысяч нажатий в секунду).

С первого взгляда работа утомительная и сложная, но только не для электронной схемы. Зато КПД импульсного стабилизатора может достигать 95%. Даже при питании потери энергии минимальны, а ключевые элементы драйвера не требуют мощных теплоотводов. Конечно, импульсные стабилизаторы несколько сложнее по конструкции и дороже, но все это окупается высокой производительностью, исключительным качеством стабилизации тока и отличными массогабаритными показателями.


Этот импульсный драйвер способен выдать ток до 3 А безо всяких радиаторов

Как подобрать драйвер для светодиодов

Разобравшись с принципом работы led driver, осталось научиться их правильно выбирать. Если ты не забыл основ электротехники, полученных в школе, то дело это нехитрое. Перечислим основные характеристики преобразователя для светодиодов, которые будут участвовать в выборе:

  • входное напряжение;
  • выходное напряжение;
  • выходной ток;
  • выходная мощность;
  • степень защиты от окружающей среды.

Прежде всего, необходимо решить, от какого источника будет питаться твой светодиодный светильник. Это может быть сеть 220 В, бортовая сеть автомобиля или любой другой источник как переменного, так и постоянного тока. Первое требование: то напряжение, которое ты будешь использовать, должно укладываться в диапазон, указанный в паспорте на драйвер в графе «входное напряжение». Кроме величины, нужно учесть и род тока: постоянный или переменный. Ведь в розетке, к примеру, ток переменный, а в автомобиле – постоянный. Первый принято обозначать аббревиатурой АС, второй DC. Почти всегда эту информацию можно увидеть и на корпусе самого прибора.


Этот драйвер рассчитан для работы от сети переменного тока напряжением от 100 до 265 В

Далее переходим к выходным параметрам. Предположим, у тебя есть три светодиода на рабочее напряжение 3.3 В и ток 300 мА каждый (указано в сопроводительной документации). Ты решил сделать настольную лампу, схема соединения диодов последовательная. Складываем рабочие напряжения всех полупроводников, получаем падение напряжения на всей цепочке: 3.3 * 3 = 9.9 В. Ток при таком соединении остается тем же – 300 мА. Значит, тебе нужен драйвер с выходным напряжением 9.9 В, обеспечивающий стабилизацию тока на уровне 300 мА.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Все полупроводники, работающие от одного драйвера, должны быть однотипными и желательно из одной партии. В противном случае, неизбежен разброс параметров светодиодов, в результате которого один из них будет светить вполнакала, а второй быстро сгорит.

Конечно, именно на это напряжение прибор найти не удастся, но это и не нужно. Все драйверы рассчитаны не на конкретное напряжение, а на некоторый диапазон. Твоя задача – уложить свое значение в этот диапазон. А вот выходной ток должен точно соответствовать 300 мА. В крайнем случае он может быть несколько меньше (лампа будет светить не так ярко), но никогда не больше. Иначе твоя самоделка сгорит сразу либо через месяц.

Идем дальше. Выясняем, какой мощности драйвер нам нужен. Этот параметр должен как минимум совпадать с потребляемой мощностью нашей будущей лампы, а лучше превышать это значение на 10-20%. Как рассчитать мощность нашей «гирлянды» из трех светодиодов? Вспоминаем: электрическая мощность нагрузки – это ток, идущий через нее, умноженный на приложенное напряжение. Берем калькулятор и перемножаем общее рабочее напряжение всех светодиодов на ток, предварительно переведя последний в амперы: 9.9 * 0.3 = 2.97 Вт.

Последний штрих. Конструктивное исполнение. Прибор может быть как в корпусе, так и без него. Первый, естественно, боится пыли и влаги, и в плане электробезопасности он не лучший вариант. Если ты решил встроить драйвер в лампу, корпус которой является хорошей защитой от окружающей среды, тогда подойдет. Но если корпус лампы имеет кучу вентиляционных отверстий (светодиоды должны охлаждаться), а само устройство будет стоять в гараже, то лучше выбрать источник питания в собственном корпусе.

Итак, нам нужен светодиодный драйвер со следующими характеристиками:

  • питающее напряжение — сеть 220 В переменного тока;
  • выходное напряжение – 9.9 В;
  • выходной ток – 300 мА;
  • выходная мощность — не менее 3 Вт;
  • корпус — пылевлагозащитный.

Отправляемся в магазин и смотрим. Вот он:


Драйвер для питания светодиодов

Причем не просто подходящий, а идеально соответствующий запросам. Слегка пониженный выходной ток продлит жизнь светодиодов, но на яркости их свечения это абсолютно никак не отразится. Потребляемая мощность упадет до 2.7 Вт – будет запас мощности драйвера.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Если у тебя очень большое количество светодиодов, то при последовательном включении их общее напряжение может превысить максимально возможное для существующих драйверов. В этом случае обратись к разделу Схема подключения драйвера к светодиодам, который находится в конце этой статьи.

В чем отличия между драйвером для светодиодов и блоком питания для LED ленты

Бытует мнение, что блоки питания для — нечто другое, чем обычный led драйвер. Попробуем прояснить этот вопрос, а заодно научимся правильно выбирать драйвер для светодиодной ленты. Светодиодная лента – это гибкая подложка, на которой расположены все те же светодиоды. Они могут стоять в 2, 3, 4 ряда, это не так важно. Важнее разобраться, как они соединены между собой.

Все полупроводники на ленте разбиты на группы по 3 светодиода, соединенных последовательно через токоограничивающий резистор. Все группы, в свою очередь, соединены параллельно:


Электрическая схема одной секции (слева) и всей светодиодной ленты

Лента продается в бобинах обычно длиной по 5 м и рассчитана на рабочее напряжение 12 или 24 В. В последнем случае в каждой группе будет не 3, а 6 светодиодов. Предположим, ты купил ленту на 12 В с удельной потребляемой мощностью 14 Вт/м. Таким образом, общая мощность, потребляемая всей бобиной, составит 14 * 5 = 70 Вт. Если тебе не нужна такая длинная, ты можешь отрезать ненужную часть с условием, что будешь резать ее между секциями. Например, ты отрезал половину. Какие характеристики при этом изменятся? Только потребляемая мощность: она уменьшится вдвое.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Не забывай, что разрезать светодиодную ленту можно только между секциями по 3 светодиода (для 24-х вольтовой их будет 6), которые хорошо видны. На рисунке ниже я пометил их стрелками.


Места разделения секций хорошо видны и даже помечены пиктограммами ножниц

Надо ли ограничивать и стабилизировать ток через обычный светодиод? Безусловно, иначе он сгорит. Но мы совсем забыли о резисторе, установленном в каждой секции ленты. Он служит для ограничения тока и подобран таким образом, что при подаче на секцию ровно 12-ти вольт ток через светодиоды будет оптимальным. В задачу драйвера светодиодной ленты входит удержание питающего напряжение строго на уровне 12 В. Все остальное берет на себя токоограничивающий резистор.

Таким образом, главное отличие блока питания led ленты от обычного led драйвера – четко фиксированное выходное напряжение 12 или 24 В. Здесь уже не получится использовать обычный драйвер с выходным напряжением, скажем, от 9 до 14 В.

Остальные критерии выбора блока питания для светодиодной ленты следующие:

  • входное напряжение . Методика выбора та же, что и для обычного драйвера: прибор должен быть рассчитан на то входное напряжение и тот род тока, которым ты будешь питать светодиодную ленту;
  • выходная мощность . Мощность блока питания должна быть минимум на 10% выше мощности ленты. При этом слишком большой запас брать не стоит: снижается КПД всей конструкции;
  • класс защиты от окружающей среды . Методика та же, что и для светодиодного драйвера (см. выше): в прибор не должны попадать пыль и влага.

Драйвер для светодиодной ленты – не что иное, как высококачественный, но обычный стабилизатор напряжения. Он выдает строго фиксированное напряжение, но абсолютно не следит за выходным током. При желании и для эксперимента вместо него ты можешь использовать, к примеру, блок питания от ПК (шина 12 В). Яркость и долговечность ленты от этого не пострадают.

Схема подключения драйвера к светодиодам

Подключить драйвер к светодиодам просто, с этим справится каждый. Вся маркировка нанесена на его корпус. На входные провода (INPUT) подаешь входное напряжение, к выходным (OUTPUT) подключаешь линейку светодиодов. Единственно, необходимо соблюдать полярность, и на этом я остановлюсь подробнее.

Полярность входа (INPUT)

Если питающее драйвер напряжение постоянное, то вывод, помеченный знаком «+» необходимо подключить к положительному полюсу источника питания. Если напряжение переменное, то обрати внимание на маркировку входных проводов. Возможны следующие варианты:

  1. Маркировка «L» и «N»: на вывод «L» нужно подать фазу (находится при помощи индикаторной отвертки), на вывод «N» — ноль.
  2. Маркировка «~», «АС» или отсутствует: полярность соблюдать не нужно.

Полярность выхода (OUTPUT)

Здесь полярность соблюдается всегда! Плюсовой провод подключается к аноду первого светодиода, минусовой — к катоду последнего. Сами светодиоды соединяются между собой: анод последующего к катоду предыдущего.


Схема подключения драйвера к гирлянде из трех последовательно включенных светодиодов

Если у тебя очень много светодиодов (скажем, 12 шт.), то их придется разбить на несколько одинаковых групп, а эти группы соединить параллельно. При этом учти, что общая потребляемая светильником мощность составит сумму мощностей всех групп, а рабочее напряжение будет соответствовать напряжению одной группы.


Линейный драйвер для светодиодов своими руками

С теорией закончим, перейдем к практике и попробуем собрать линейный драйвер своими руками. Проще всего эту задачу решить при помощи широко распространенного интегрального стабилизатора КР142ЕН12А (его импортный аналог — LM317). Найти его можно в любом соответствующем магазине, и стоит он в районе 20 рублей. Необходимые материалы и инструменты: паяльник, тестер и провода.

Эта микросхема рассчитана на входное напряжение до 40 В, выдерживает ток до 1.5 А и, главное, имеет встроенную защиту от перегрузки, короткого замыкания и перегрева. Правда, это стабилизатор напряжения, а драйвер должен стабилизировать ток. Но мы этот вопрос решим, чуть изменив типовую схему включения микросхемы.


Универсальный драйвер для светодиодов на интегральном стабилизаторе

Здесь микросхема применяется в роли регулирующего элемента, стабилизирующего ток на заданном уровне. Какой величины этот ток будет? Все зависит от сопротивления резистора R1, номинал которого рассчитывается по простой формуле: R = 1.2/I, где:

  • R – сопротивление в омах;
  • I – необходимый ток в амперах.

Давай попробуем построить драйвер для тех светодиодов, из которых мы делали настольную лампу в начале статьи. Итак, нам нужен драйвер, на напряжение 9.9 В выдающий стабилизированный ток 300 мА. Делаем расчет номинала резистора R1: 1.2/0.3= 4 Ом. Поскольку резистор стоит в токовой цепи, мощность его выбираем не менее 4 Вт.

Здесь отлично подойдут резисторы, используемые практически во всех телевизорах в качестве гасящих по питанию (такие лежат в любом магазине). Они имеют мощность 2 Вт и сопротивление 1-2 Ом. Если резисторы одноомные, то их понадобится 4 шт, если двухомные – 2 шт. Соединяем их последовательно, чтобы сопротивления сложились.

Крепим микросхему на небольшой радиатор и подключаем к выходу нашего драйвера цепочку из трех последовательно соединенных светодиодов, соблюдая полярность. Можно включать. Но куда? Какое входное напряжение у этого драйвера? Вот тут начинается самое интересное. Напряжение на входе должно быть минимум на 2-3 вольта больше того, что необходимо светодиодам, но не более 40 В – больше микросхема не выдержит.

В нашем конкретном случае светодиодам нужно 9.9 В. Значит, на вход можно подать постоянное напряжение величиной от 12 до 40 В. Причем напряжение это может быть нестабилизированное. Подойдет автомобильный аккумулятор, блок питания ноутбука или ПК, понижающий трансформатор с диодным мостом. Подключаем, соблюдая полярность, и наш фонарь готов!

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

А как же с выходным напряжением? Об этом не нужно беспокоиться. Как только драйвер стабилизирует ток на заданном уровне, нужное напряжение на светодиодах установится без нашей помощи. Кто не верит, берет тестер и измеряет.

Вот и закончилась наша беседа о led драйверах. Надеюсь, теперь ты не только знаешь, как работает этот важный узел, но и сможешь его правильно выбрать, подключить, а при необходимости даже собрать своими руками.

Светодиодное освещение является новым и перспективным направлением в сфере искусственного освещения, где в качестве источника света используются светодиоды. Однако, немаловажную роль в таком типе освещения играет электроника, которая питает светодиоды. Именно грамотно подобранная электроника позволяет добиться от светодиодов качественного света.

Светодиоды работают только от постоянного источника питания, поэтому для их подключения требуется понизить переменное напряжение общегородской сети (220В). Для этого применяются специальные устройства - блоки питания (LED драйверы). У каждой конкретной цепи светодиодов существуют такие параметры как мощность, номинальные сила тока и напряжение. Эти параметры очень важны при выборе светодиодного драйвера. В данной статье мы подробно опишем, как правильно выбрать блок питания для светодиодов. Зачастую возникает такая ситуация, когда уже куплены светодиоды, спроектирована схема подключения, а подобрать подходящий драйвер к получившейся цепи невозможно. Поэтому очень важно заранее ознакомиться с различными вариантами блоков питания и составлять схему цепи, зная возможности по обеспечению электропитанием.

Блок питания для светодиодов - это компактный электронный прибор, дающий на выходе определенное напряжение или ток. Выбор блока питания зависит от нескольких параметров, которые мы сейчас с вами рассмотрим подробнее.

Тип источника питания. Существует две большие группы источников питания. В первую группу входят источники стабилизированного напряжения, которые больше знакомы нам в качестве адаптеров для ноутбуков или зарядных устройств для мобильных телефонов. У таких источников выходное напряжение всегда остается одинаковым, а выходной ток возрастает с подключением нагрузки. Такое питание требуется для работы светодиодных лент, модулей и линеек. Во вторую группу входят источники стабилизированного тока, также часто называемые “драйверами” или “LED драйверами”. У LED драйверов выходной ток остается постоянным, а выходное напряжение меняется в зависимости от нагрузки, что требуется для подключения мощных светодиодов и некоторых типов линеек.

Мощность. У каждого источника питания, как и у каждой цепи, есть такой важный параметр, как мощность. Она зависит от количества элементов и их параметров. Максимальная мощность светодиодного драйвера указывается производителем на маркировке и показывает, какую максимальную нагрузку можно подключить. Самое главное в этом вопросе, чтобы мощность источника была выше мощности цепи, иначе возможен перегрев блока.

Номинальные параметры тока и напряжения . На всех светодиодах заводом- изготовителем указывается номинальная сила тока, следовательно, драйверы светодиодов нужно подбирать исходя из этого. Чаще всего встречаются LED драйверы с номинальным значением тока - это 350 и 700 миллиампер. Светодиодные ленты, как правило, выпускаются в двух стандартах напряжений - 12 и 24 Вольта. Блоки питания маркируются значениями напряжения и мощности.

Класс герметичности и влагозащищенности. На сегодняшний день светодиоды используются практически везде, даже в бассейнах, поэтому питание светодиодов должно быть бесперебойным, выдерживать воздействие различных внешних факторов и изготавливаться в специальных негерметичных, полугерметичных и герметичных корпусах, которые не только защищают от влаги, но и прекрасно отводят тепло. Существует класс защиты, который определяется двумя цифрами, указанными после аббревиатуры IP (IP = Ingress Protection англ. = защита от проникновения). IP применимо к электрооборудованию. Первая цифра обозначает класс защиты от проникновения твёрдых инородных тел в прибор (пыль). Вторая же обозначает класс защиты от проникновения жидких инородных тел (вода). Следует отметить, класс защиты IP ничего не говорит о температуре окружающей среды, при которой прибор можно использовать.

1-я цифра

Обозначение

2-я цифра

Обозначение

IP0X

Защита отсутствует.

IPX0

Защита отсутствует.

IP1X

Защита от крупноразмерных инородных тел D>50mm. Отсутствие защиты при намеренном вторжении.

IPX1

Защита от вертикально падающих капель воды.

IP2X

Защита от среднеразмерных инородных тел D>12mm. Держать пальцы подальше.

IPX2

Защита от диагонально падающих капель воды, 15° по отношению к нормальному размещению объекта.

IP3X

Защита от малоразмерных инородных тел D>2,5mm. Держать иаганструмент и кабель подальше.

IPX3

Защита от мелких водяных брызг до 60° по отношению к нормальному размещению объекта.

IP4X

Защита от пескообразных загрязнителей D>1mm. Держать инструмент и кабель подальше.

IPX4

Защита от большого количества водяных брызг со всех сторон.

IP5X

Защита от отложения пыли

IPX5

Защита от сильных струй воды со всех сторон.

IP6X

Защита от попадания пыли

IPX6

Защита от временного затопления (сильная струя воды).

IPX7

Защита от временного погружения под воду.

IPX8

Защита от погружения на глубину.

IPX9

Защита от воды под давленим.

Например, прибор имеет класс защиты IP65 , то есть он защищён от проникновения пыли и сильных струй воды. Такой прибор можно легко использовать на "открытом воздухе".

При выборе блока питания следует помнить основное требование для его правильной работы - это расчет точного количества светодиодов, которое вы планируете подключить. Также стоит учесть условия эксплуатации: при сильных перепадах температуры эффективная мощность может снизиться и это приведет к поломке оборудования. Поэтому очень важно, чтобы источник питания был качественным и гарантировал длительную работу.


Если у вас возникли вопросы по подбору блока питания для светодиодов, или просто в целях экономии времени, вам лучше для получения консультаций. Мы с радостью поможем Вам!

Мы рассмотрим действительно простой и недорогой мощный светодиодный драйвер. Схема представляет собой источник постоянного тока, что означает, что он сохраняет яркость LED постоянной независимо от того, какое питание вы используете. Ели при ограничении тока небольших сверхярких светодиодов достаточно резистора, то для мощностей свыше 1-го ватта нужна специальная схема. В общем так питать светодиод лучше, чем с помощью резистора. Предлагаемый led драйвер идеально подходит особенно для , и может быть использован для любого их числа и конфигурации, с любым типом питания. В качестве тестового проекта, мы взяли LED элемент на 1 ватт. Вы можете легко изменить элементы драйвера на использование с более мощными светодиодами, на различные типы питания - БП, аккумуляторы и др.

Технические характеристики led драйвера:

Входное напряжение: 2В до 18В
- выходное напряжение: на 0,5 меньше, чем входное напряжение (0.5V падение на полевом транзисторе)
- ток: 20 ампер

Детали на схеме:

R2: приблизительно в 100-омный резистор

R3: подбирается резистор

Q2: маленький NPN-транзистор (2N5088BU )

Q1: большой N-канальный транзистор (FQP50N06L )

LED: Luxeon 1-ватт LXHL-MWEC


Другие элементы драйвера:

В качестве источника питания использован трансформатор-адаптер, вы можете использовать батареи. Для питания одного светодиода 4 - 6 вольт достаточно. Вот почему эта схема удобна, что вы можете использовать широкий спектр источников питания, и он всегда будет светить одинаково. Радиатор не требуется, так как идёт около 200 мА тока. Если планируется больше тока, вы должны установить LED элемент и транзистор Q1 на радиатор.

Выбор сопротивления R3

- ток LED устанавливается с помощью R3, он приблизительно равен: 0.5 / R3

Мощность рассеиваемая на резисторе приблизительно: 0.25 / R3

В данном случае установлен ток 225 мА с помощью R3 на 2,2 Ом. R3 имеет мощность 0,1 Вт, таким образом, стандартный 0,25 Вт резистор подходит отлично. Транзистор Q1 будет работать до 18 В. Если вы хотите больше, нужно изменить модель. Без радиаторов, FQP50N06L может рассеивать только около 0,5 Вт - этого достаточно для 200 мА тока при 3-х вольтовой разнице между источником питания и светодиодом.


Функции транзисторов на схеме:

- Q1 используется в качестве переменного резистора.
- Q2 используется в качестве токового датчика, а R3-это установочный резистор, который приводит к закрыванию Q2, когда течет повышенный ток. Транзистор создаёт обратную связь, которая непрерывно отслеживает текущие параметры тока и держит его точно в заданном значении.

  • Реверс-инжиниринг
  • Недавно один знакомый попросил меня помочь с проблемой. Он занимается разработкой LED ламп, попутно ими приторговывая. У него скопилось некоторое количество ламп, работающих неправильно. Внешне это выражается так – при включении лампа вспыхивает на короткое время (менее секунды) на секунду гаснет и так повторяется бесконечно. Он дал мне на исследование три таких лампы, я проблему решил, неисправность оказалась очень интересной (прямо в стиле Эркюля Пуаро) и я хочу рассказать о пути поиска неисправности.

    LED лампа выглядит вот так:

    Рис 1. Внешний вид разобранной LED лампы

    Разработчик применил любопытное решение – тепло от работающих светодиодов забирается тепловой трубкой и передается на классический алюминиевый радиатор. По словам автора, такое решение позволяет обеспечить правильный тепловой режим для светодиодов, минимизируя тепловую деградацию и обеспечивая максимально возможный срок службы диодов. Попутно увеличивается срок службы драйвера питания диодов, так как плата драйвера оказывается вынесенной из теплового контура и температура платы не превышает 50 градусов Цельсия.

    Такое решение – разделить функциональные зоны излучения света, отвода тепла и генерации питающего тока – позволило получить высокие эксплуатационные характеристики лампы по надежности, долговечности и ремонтопригодности.
    Минус таких ламп, как ни странно, прямо вытекает из ее плюсов – долговечная лампа не нужна производителям:). Историю о сговоре производителей ламп накаливания о максимальном сроке службы в 1000 часов все помнят?

    Ну и не могу не отметить характерный внешний вид изделия. Мой «госконтроль» (жена) не разрешил мне ставить эти лампы в люстру, где они видны.

    Вернемся к проблемам драйвера.

    Вот так выглядит плата драйвера:


    Рис 2. Внешний вид платы LED драйвера со стороны поверхностного монтажа

    И с обратной стороны:


    Рис 3. Внешний вид платы LED драйвера со стороны силовых деталей

    Изучение ее под микроскопом позволило определить тип управляющей микросхемы – это MT7930. Это микросхема контроля обратноходового преобразователя (Fly Back), обвешанная разнообразными защитами, как новогодняя елка – игрушками.

    В МТ7930 встроены защиты:

    От превышения тока ключевого элемента
    понижения напряжения питания
    повышения напряжения питания
    короткого замыкания в нагрузке и обрыва нагрузки.
    от превышения температуры кристалла

    Декларирование защиты от короткого замыкания в нагрузке для источника тока носит скорее маркетинговый характер:)

    Принципиальной схемы на именно такой драйвер добыть не удалось, однако поиск в сети дал несколько очень похожих схем. Наиболее близкая приведена на рисунке:

    Рис 4. LED Driver MT7930. Схема электрическая принципиальная

    Анализ этой схемы и вдумчивое чтение мануала к микросхеме привело меня к выводу, что источник проблемы мигания – это срабатывание защиты после старта. Т.е. процедура начального запуска проходит (вспыхивание лампы – это оно и есть), но далее преобразователь выключается по какой-то из защит, конденсаторы питания разряжаются и цикл начинается заново.

    Внимание! В схеме присутствуют опасные для жизни напряжения! Не повторять без должного понимания что вы делаете!

    Для исследования сигналов осциллографом надо развязать схему от сети, чтобы не было гальванического контакта. Для этого я применил разделительный трансформатор. На балконе в запасах были найдены два трансформатора ТН36 еще советского производства, датированные 1975 годом. Ну, это вечные устройства, массивные, залитые полностью зеленым лаком. Подключил по схеме 220 – 24 – 24 -220. Т.е. сначала понизил напряжение до 24 вольт (4 вторичных обмотки по 6.3 вольта), а потом повысил. Наличие нескольких первичных обмоток с отводами дало мне возможность поиграть с разными напряжениями питания – от 110 вольт до 238 вольт. Такое решение конечно несколько избыточно, но вполне пригодно для одноразовых измерений.


    Рис 5. Фото разделительного трансформатора

    Из описания старта в мануале следует, что при подаче питания начинает заряжаться конденсатор С8 через резисторы R1 и R2 суммарным сопротивлением около 600 ком. Два резистора применены из требований безопасности, чтобы при пробое одного ток через эту цепь не превысил безопасного значения.

    Итак, конденсатор по питанию медленно заряжается (это время порядка 300-400 мс) и когда напряжение на нем достигает уровня 18,5 вольт – запускается процедура старта преобразователя. Микросхема начинает генерировать последовательность импульсов на ключевой полевой транзистор, что приводит к возникновению напряжения на обмотке Na. Это напряжение используется двояко – для формирования импульсов обратной связи для контроля выходного тока (цепь R5 R6 C5) и для формирования напряжения рабочего питания микросхемы (цепь D2 R9). Одновременно в выходной цепи возникает ток, который и приводит к зажиганию лампы.

    Почему же срабатывает защита и по какому именно параметру?

    Первое предположение

    Срабатывание защиты по превышению выходного напряжения?

    Для проверки этого предположения я выпаял и проверил резисторы в цепи делителя (R5 10 ком и R6 39 ком). Не выпаивая их не проверить, поскольку через обмотку трансформатора они запараллелены. Элементы оказались исправны, но в какой-то момент схема заработала!

    Я проверил осциллографом формы и напряжения сигналов во всех точках преобразователя и с удивлением убедился, что все они – полностью паспортные. Никаких отклонений от нормы…

    Дал схеме поработать часок – все ОК.

    А если дать ей остыть? После 20 минут в выключенном состоянии не работает.

    Очень хорошо, видимо дело в нагреве какого-то элемента?

    Но какого? И какие же параметры элемента могут уплывать?

    В этой точке я сделал вывод, что на плате преобразователя имеется какой-то элемент, чувствительный к температуре. Нагрев этого элемента полностью нормализует работу схемы.
    Что же это за элемент?

    Второе предположение

    Подозрение пало на трансформатор. Проблема мыслилась так – трансформатор из-за неточностей изготовления (скажем на пару витков недомотана обмотка) работает в области насыщения и из-за резкого падения индуктивности и резкого нарастания тока срабатывает защита по току полевого ключа. Это резистор R4 R8 R19 в цепи стока, сигнал с которого подается на вывод 8 (CS, видимо Current Sense) микросхемы и используется для цепи ОС по току и при превышении уставки в 2.4 вольта отключает генерацию для защиты полевого транзистора и трансформатора от повреждений. На исследуемой плате стоит параллельно два резистора R15 R16 с эквивалентным сопротивлением 2,3 ома.

    Но насколько я знаю, параметры трансформатора при нагреве ухудшаются, т.е. поведение системы должно быть другим – включение, работа минут 5-10 и выключение. Трансформатор на плате весьма массивный и тепловая постоянная у него ну никак не менее единиц минут.
    Может, конечно в нем есть короткозамкнутый виток, который исчезает при нагреве?

    Перепайка трансформатора на гарантированно исправный была в тот момент невозможна (не привезли еще гарантированно рабочую плату), поэтому оставил этот вариант на потом, когда совсем версий не останется:). Плюс интуитивное ощущение – не оно. Я доверяю своей инженерной интуиции.

    К этому моменту я проверил гипотезу о срабатывании защиты по току, уменьшив резистор ОС по току вдвое припайкой параллельно ему такого же – это никак не повлияло на моргание лампы.

    Значит, с током полевого транзистора все нормально и превышения по току нет. Это было хорошо видно и по форме сигнала на экране осциллографа. Пик пилообразного сигнала составлял 1,8 вольта и явно не достигал значения в 2,4 вольта, при котором микросхема выключает генерацию.

    К изменению нагрузки схема также оказалась нечувствительна – ни подсоединение второй головки параллельно, ни переключение прогретой головы на холодную и обратно ничего не меняло.

    Третье предположение

    Я исследовал напряжение питания микросхемы. При работе в штатном режиме все напряжения были абсолютно нормальными. В мигающем режиме тоже, насколько можно было судить по формам сигналов на экране осциллографа.

    По прежнему, система мигала в холодном состоянии и начинала нормально работать при прогреве ножки трансформатора паяльником. Секунд 15 погреть – и все нормально заводится.

    Прогрев микросхемы паяльником ничего не давал.

    И очень смущало малое время нагрева… что там может за 15 секунд измениться?

    В какой-то момент сел и методично, логически отсек все гарантированно работающее. Раз лампа загорается - значит цепи запуска исправны.
    Раз нагревом платы удается запустить систему и она часами работает - значит и силовые системы исправны.
    Остывает и перестает работать - что-то зависит от температуры…
    Трещина на плате в цепи обратной связи? Остывает и сжимается, контакт нарушается, нагревается, расширяется и контакт восстанавливается?
    Пролазил тестером холодную плату - нет обрывов.

    Что же еще может мешать переходу от режима запуска в рабочий режим?!!!

    От полной безнадеги интуитивно припаял параллельно электролитическому конденсатору 10 мкф на 35 вольт по питанию микросхемы такой же.

    И тут наступило счастье. Заработало!

    Замена конденсатора 10 мкф на 22 мкф полностью решило проблему.

    Вот он, виновник проблемы:


    Рис 6. Конденсатор с неправильной емкостью

    Теперь стал понятен механизм неисправности. Схема имеет две цепи питания микросхемы. Первая, запускающая, медленно заряжает конденсатор С8 при подаче 220 вольт через резистор в 600 ком. После его заряда микросхема начинает генерировать импульсы для полевика, запуская силовую часть схемы. Это приводит к генерации питания для микросхемы в рабочем режиме на отдельной обмотке, которое поступает на конденсатор через диод с резистором. Сигнал с этой обмотки также используется для стабилизации выходного тока.

    Пока система не вышла в рабочий режим - микросхема питается запасенной энергией в конденсаторе. И ее не хватало чуть-чуть - буквально пары-тройки процентов.
    Падения напряжения оказалось достаточно, чтобы система защиты микросхемы срабатывала по пониженному питанию и отключала все. И цикл начинался заново.

    Отловить эту просадку напряжения питания осциллографом не получалось - слишком грубая оценка. Мне казалось, что все нормально.

    Прогрев же платы увеличивал емкость конденсатора на недостающие проценты - и энергии уже хватало на нормальный запуск.

    Понятно, почему только некоторая часть драйверов отказала при полностью исправных элементах. Сыграло роль причудливое сочетание следующих факторов:

    Малая емкость конденсатора по питанию. Положительную роль сыграл допуск на емкость электролитических конденсаторов (-20% +80%), т.е. емкости номиналом 10 мкф в 80% случаев имеют реальную емкость около 18 мкф. Со временем емкость уменьшается из-за высыхания электролита.
    Положительная температурная зависимость емкости электролитических конденсаторов от температуры. Повышенная температура на месте выходного контроля - достаточно буквально пары-тройки градусов и емкости хватает для нормального запуска. Если предположить, что на месте выходного контроля было не 20 градусов, а 25-27, то этого оказалось достаточно для практически 100% прохождения выходного контроля.

    Производитель драйверов сэкономил конечно, применив емкости меньшего номинала по сравнению с референс дизайн из мануала (там указано 22 мкф) но свежие емкости при повышенной температуре и с учетом разброса +80% позволили партию драйверов сдать заказчику. Заказчик получил вроде бы работающие драйверы, которые со временем стали отказывать по непонятной причине. Интересно было бы узнать – инженеры производителя учли особенности поведения электролитических конденсаторов при повышении температуры и естественный разброс или это получилось случайно?

    2024 wisemotors.ru. Как это работает. Железо. Майнинг. Криптовалюта.