Модуль касательного ускорения точки. Тангенциальная составляющая ускорения. Определение тангенциального ускорения по известной функции скорости

Скорость. Путь.

Пусть материальная точка совершает движение в выбранной СО. Вектор, проведённый из начального положения точки в конечное называется перемещением (). Тогда векторная величина называется средней скоростью перемещения . Длина участка траектории, пройденного точкой за промежуток , называется путём S (). Средняя скорость характеризует быстроту и направление движения частиц. Среднюю быстроту движения тела по траектории характеризует средняя путевая скорость . Как быстро и в каком направлении движется тело в данный момент t характеризует мгновенная скорость . Мгновенная путевая скорость . При Модуль мгновенной скорости равен мгновенной путевой скорости Мгновенная скорость всегда направленна по касательной к траектории. Для бесконечно малого перемещения . Для небольших промежутков выполняется приближённо.

Скорость – векторная величина, значит, её можно записать в виде . С другой стороны . Следовательно, проекция скорости … Величина (модуль) скорости .

Выражение для скорости в полярных координатах (): , . Направление задаётся углом или единичным вектором . Радиус-вектор точки , , – единичный вектор, перпендикулярный . .

Пройденный путь частицы от до .

Ускорение. Нормальное и тангенциальное ускорения.

При движении материальной точки её скорость меняется как по величине, так и по направлению. Как быстро это происходит в произвольный момент времени, характеризует векторная величина ускорение . . Проекция вектора ускорения

Рассмотрим движение частицы, совершаемое в плоскости. Скорость направлена по касательной траектории, поэтому можно записать . Здесь единичный вектор задаёт направление касательной, .

Ускорение , направленное по касательной к траектории, определяемое скоростью изменение величины скорости, или модуля, называется тангенциальным ускорением .

нормальное ускорение (характеризует быстроту изменения направления скорости), - единичный вектор, перпендикулярный и направленный внутрь кривой, R – радиус кривизны линии.

Третий закон Ньютона. Принцип относительности Галилея.

3-ий закон Ньютона: силы, с которыми 2 тела действуют друг на друга, равны по величине, противоположны по направлению, лежат на одной прямой, проходящей через тела и имеют одинаковую физическую природу.

Три закона Ньютона позволяют решить основную задачу динамики: по заданным силам, начальному положению и начальным скоростям тел можно определить дальнейшее движение механической системы. 1-ый закон даёт критерий отыскания ИСО; 2-ой закон даёт динамическое уравнение движения; 3-ий закон позволяет ввести в рассмотрение все силы, действующие в системе. При переходе одной ИСО в другую ИСО скорости преобразовываются по закону , а ускорение - , т.е. ускорение тел не меняется, также как и силы, следовательно, остаётся неизменным уравнение 2-ого закона. Следовательно, при одинаковых начальных условиях (координаты и скорости) мы получим в обоих случаях одинаковое решение. Значит, ИСО – эквивалентны.

Принцип относительности Галилея: все механические явления в различных ИСО протекают одинаковым образом при одинаковых начальных условиях, вследствие чего нельзя выделить какую-либо ИСО как абсолютно покоящуюся.

Закон сохранения импульса.

В механике существуют 3 фундаментальные закона сохранения (-это некоторая функция координат скоростей частиц и времени, которая остаётся постоянной при движении). Законы сохранения позволяют решать задачи, используя уравнения дифференциалов 1-ого порядка. Векторная величина называется импульсом материальной точки (импульс – количество движения). Из 2-ого закона Ньютона следует, что скорость изменения импульса механической системы равна сумме внешних сил, действующих на систему . N – количество материальных точек. Система, на которую не действуют внешние силы, называется замкнутой , или изолированной. Для замкнутой системы правая часть уравнения равна 0. Значит, . Получаем закон сохранения импульса: импульс замкнутой системы сохраняется (не меняется) со временем .

Закон сохранения импульса является следствием однородности пространства. Замечания: 1) Импульс незамкнутой системы будет сохранятся, если внешние силы компенсируют друг друга, и их результирующая = 0; 2) если результирующая внешних сил , но = 0 её проекция на некоторое направление (пр. ОХ), то проекция импульса на это направление будет сохранятся ; 3)если внешние силы присутствуют, но рассматривается кратковременных процесс (удар, взрыв), то действующими внешними силами можно пренебречь и использовать закон сохранения импульса , , т.к. dt мало, то импульс внешних сил мал, и им можно пренебречь .

Пусть задана система материальных точек, массами , радиус-векторы которых относительно некоторого начала О . Точка С, радиус-вектор которой определяется выражением , называется центром масс , или центром инерции системы. Её положение относительно тел, не зависит от выбора О. Скорость центра масс . ИСО, связанную с центром масс, называют системой центра масс .

Консервативные силы.

Взаимодействие между телами, находящимися на некотором расстоянии друг от друга, осуществляется посредством силовых полей, создаваемых во всём окружающем пространстве. Если поле не меняется, то такое поле называется стационарным . Пусть существует точка О (центр силового поля), такая что в любой точке пространства сила, действующая на частицу, лежит на прямой, проходящей через данную точку пространства и силовой центр. Если модуль сил зависит только от расстояния между этими точками, то мы имеем центральное силовое поле (пр. кулоновское поле). Если во всех точках пространства сила одинакова по величине и направлению, то говорят об однородном силовом поле . Если работа, совершаемая над частицей силами стационарного поля, не зависит от выбора траектории движения, определяется только начальным и конечным положениями тел, то такое поле называют консервативным .

1) поле силы тяжести называют стационарным однородным. . Значит, поле силы тяжести – консервативное.

2) поле силы упругости. . Значит, поле силы упругости – консервативное.

3) Покажем, что любое центральное силовое поле является консервативным. , . . Здесь работа определяется начальным и конечным положением точек, а не видом траектории. Следовательно, центральное силовое поле является консервативным. Центральными силами являются:

1) кулоновская сила взаимодействия , .

2) гравитационная сила взаимодействия , .

Эквивалентным определением консервативных сил является: сила называется консервативной , если её работа на произвольной замкнутой траектории = 0.

Задача 2-ух тел.

Задача 2-ух тел по движению изолированной системы 2-ух материальных точек, взаимодействующих друг с другом. В силу изолированности системы её импульс сохраняется, а центр масс движется с постоянной скорость, относительно системы отсчёта К’. Это позволяет перейти в систему центра масс (она будет инерциальная, как и К’). – радиус-вектор относительно . - радиус-векторы и относительно С. Составляем систему: . Решая систему, получаем: , . Движение тел определяется силами , . Учли 3-ий закон Ньютона и изотропность пространства (если поворот СО на произвольный угол не приведёт к изменению результатов измерений). Получаем уравнения: , . Решаем, в результате получаем: .

Центр масс твёрдого тела движется таким же образом, как двигалась бы материальная точка массы m под действием всех внешних сил, действующих на твёрдое тело.

Гироскопы.

Гироскоп (или волчок) – массивное твёрдое тело, симметричное некоторой оси, совершающее вращения вокруг неё с большой угловой скоростью. В силу симметрии гироскопа выполняется . При попытке повернуть вращающийся гироскоп вокруг некоторой оси наблюдается гироскопический эффект – под действием сил, которые, казалось бы, должны были вызвать поворот оси гироскопа ОО вокруг прямой О’O’, ось гироскопа поворачивается вокруг прямой О’’О’’ (ось ОО и прямая О’O’ предполагаются лежащими в плоскости чертежа, а прямая О’’О’’ и силы f1 и f2 – перпендикулярными к этой плоскости). Объяснение эффекта основано на использование уравнения момента . Момент импульса поворачивается вокруг оси ОХ в силу соотношения . Вместе с вокруг ОХ поворачивается и гироскоп. Вследствие гироскопического эффекта на подшипнике, на котором вращается гироскоп, начинают действовать гироскопические силы . Под действием гироскопических сил ось гироскопа стремиться занять положение, параллельное угловой скорости вращения Земли.

Описанное поведение гироскопа положено в основу гироскопического компаса . Преимущества гироскопа: указывает точное направление на географический северный полюс, его работа не подвержена воздействию металлических предметов.

Прецессия гироскопа – особый вид движения гироскопа имеет место в том случае, если момент действующих на гироскоп внешних сил, оставаясь постоянным по величине, поворачивается одновременно с осью гироскопа, образуя с ней всё время прямой угол. Рассмотрим движение гироскопа с одной закреплённой точкой на оси под действием силы тяжести , – расстояние от закреплённой точки до центра инерции гироскопа, – угол между гироскопом и вертикалью. направлен момент перпендикулярно к вертикальной плоскости, проходящей через ось гироскопа. Уравнение движения: приращение импульса = Следовательно, изменяет своё положение в пространстве таким образом, что его конец описывает окружность в горизонтальной плоскости. За промежуток времени гироскоп повернулся на угол ось гироскопа описывает конус вокруг вертикальной оси с угловой скоростью угловая скорость прецессии.

Гармонические колебания.

Колебания – процессы, характеризующиеся той или иной степенью повторяемости по времени. В зависимости от физической природы повторяющегося процесса различают колебания: механические, электромагнитные, электромеханические и другие. Все эти процессы, несмотря на различную физическую природу, описываются одинаковыми математическими уравнениями и имеют ряд общих свойств. Рассмотрим небольшой шарик массы m, подвешенный на лёгкой упругой пружине жёсткости k. В положении равновесия (х=0) сумма сил, действующих на шар, равна 0, т.е. . При отклонении шарика от положения равновесия его движение будет описываться уравнением: . Уравнение запишем в следующем виде: . Положение тела описывается через функцию косинуса (или синуса), которая называется гармонической, поэтому такие колебания называются гармоническими. амплитуда колебаний – даёт максимальное отклонение от положения равновесия. – фаза колебания – определяется смещением тела в данный момент времени. – начальная фаза . Функция косинуса имеет период . Значит, состояние колеблющегося тела повторяется при изменении фазы на . Промежуток времени, в течение которого фаза изменяется на , называется периодом колебаний . Период – время, за которое совершается одно полное колебание . Частота колебаний – количество колебаний за единицу времени , . круговая (циклическая) частота , т.е. количество колебаний за секунд. Зная начальное положение и скорость тела, можно определить амплитуду и начальную фазу: .Движение тела при гармоническом колебании происходит под действием квазиупругой силы : , которая является консервативной, а, значит, выполняется закон сохранения энергии , . Среднее значение кинетической и потенциальной энергий по времени: .

Затухающие колебания.

В реальных физических системах всегда действуют силы сопротивления, в результате действия которых амплитуда колебаний с течением времени убывает. рассмотрим движение тела в вязкой среде, когда силы сопротивления противоположны скорости движения тела: , – коэффициент сопротивления. . Подставим вместо – дифференциальное уравнение 2-ого порядка сводится к квадратному алгебраическому уравнению . Колебательный процесс возможен, если силы сопротивления достаточно малы. Это означает, что должно выполняться условие . В этом случае . Следовательно, общим решением нашего уравнения будет функция – кинематический закон затухающих колебаний. Можно сказать, что наблюдаются гармонические колебания с частотой , амплитуда же колебаний убывает по экспоненциальному закону . Скорость затухания определяется величиной коэффициента затухания . Затухание характеризуется также декрементом затухания , который показывает во сколько раз уменьшилась амплитуда колебаний за время, равное периоду : . Логарифм этого выражения называют логарифмическим декрементом затухания : . В затухающих системах используется также такая величина как добротность : .

Волновое уравнение.

Уравнение любой волны есть решение некоторого дифференциального уравнения, называемого волновым . Исходя из физических свойств среды и основных законов механики мы получаем волновое уравнение из явного выражения для уравнения плоской волны.

Можно записать: – волновое уравнение . Волновому уравнению будет удовлетворять любая волна произвольной частоты , распространяющаяся со скоростью . определяется физическими свойствами среды. В случае плоской волны, распространяющейся в направлении по х, волновое уравнение записывается в виде: .

Энергия упругой волны.

Пусть плоская продольная волна распространяется в направлении ОХ в некоторой упругой среде. Её уравнение: . Частицы среды, отклоняясь от положения равновесия, движутся с некоторыми скоростями. Следовательно, они обладают кинетической и потенциальной энергиями. Выделим в среде цилиндрический объем V с площадью основания S и высотой x. Его величина такова, что можем считать скорости частиц и относительное смещение одинаковыми. Энергия, заключённая в этом объёме . Таким образом, плотность энергии упругой волны . Подставим в него уравнение плоской волны, преобразуем и воспользуемся тем, что : . Затем найдём среднюю по периоду плотность энергии : . Из выражения для плотности энергии видно, что её величина меняется со временем от 0 до некоторого максимального значения, а значит, энергия от источников колебания переносится волной из одного места пространства в другое со скоростью Волна осуществляет процесс переноса энергии, но не вещества. Перенос энергии осуществляется посредством сил упругого взаимодействия между частицами среды. Количество энергии, переносимое через некоторую поверхность за единицу времени, называется потоком энергии через эту поверхность: . Для более детальной характеристики процесса переноса энергии используется вектор плотности потока энергии . По величине он равен потоку энергии, переносимой через площадку, перпендикулярную направлению распространения волны, делённому на площадь этой площадки: – последнее – вектор Умова . По направлению он совпадает с направлением распространения волны. Среднее . Модуль этого выражения называется интенсивностью волны .

Сложение скоростей в СТО.

В XIX веке классическая механика столкнулась с проблемой распространения этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов. Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона). Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми. Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разница между их координатами в одной ИСО - всегда равно их расстоянию в другой инерциальной системе. Вторая идея - принцип относительности. Находясь на корабле, движущимся равномерно и прямолинейно, нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что-то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом, электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми. Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложение скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца.

Если некоторый объект имеет компоненты скорости относительно системы S и - относительно S", то между ними существует следующая связь:

В этих соотношениях относительна скорость движения систем отсчёта v направлена вдоль оси x. Релятивистское сложение скоростей, как и преобразования Лоренца, при малых скоростях () переходит в классический закон сложения скоростей.

Если объект движется со скоростью света вдоль оси x относительно системы S, то такая же скорость у него будет и относительно S": . Это означает, что скорость является инвариантной (одинаковой) во всех ИСО.

Барометрическая формула.

Барометрическая формула даёт зависимость атмосферного давления от высоты, отсчитанной от поверхности Земли. Предполагается, что температура атмосферы с высотой не меняется. Для вывода формулы выделим вертикальный цилиндр: поперечное сечение S. В нём выделяется небольшой цилиндрический объём высотой dh. Он находится в равновесии: на него действуют сила тяжести mg, вертикально направленная вверх сила давления газа F1 и вертикально направленная вниз сила давления F2. Их сумма = 0. В проекции: -mg+ F1-. F2=0 . Из уравнения Клапейрона-Менделеева . Интегрируем в пределах от 0 до и получаем: – барометрическая формула , используемая для определения высоты. Изменением в температуре можно пренебречь.

Давление газа на стенку.

Распределение Максвелла.

Пусть имеется n тождественных молекул, находящихся в состоянии беспорядочного теплового движения при определенной температуре. После каждого акта столкновения между молекулами, их скорости меняются случайным образом. В результате невообразимо большого числа столкновений устанавливается стационарное равновесное состояние, когда число молекул в заданном интервале скоростей сохраняется постоянным.

В результате каждого столкновения проекции скорости молекулы испытывают случайное изменение на , , , причем изменения каждой проекции скорости независимы друг от друга. Будем предполагать, что силовые поля на частицы не действуют. Найдем в этих условиях, каково число частиц dn из общего числа n имеет скорость в интервале от υ до υ+Δυ. При этом мы не можем ничего определенного сказать о точном значении скорости той или иной частицы υi, поскольку за столкновениями и движениями каждой из молекул невозможно проследить ни в опыте, ни в теории. Такая детальная информация вряд ли имела бы практическую ценность.

Скорость – векторная величина. Для проекции скорости на ось х (x-й составляющей скорости) имеем тогда где А1 – постоянная, равная

Графическое изображение функции показано на рисунке. Видно, что доля молекул со скоростью не равна нулю. При , (в этом физический смысл постоянной А1).

Приведённое выражение и график справедливы для распределения молекул газа по x-компонентам скорости. Очевидно, что и по y- и z-компонентам скорости также можно получить:

Вероятность того, что скорость молекулы одновременно удовлетворяет трём условиям: x-компонента скорости лежит в интервале от , до + ,; y-компонента, в интервале от до + ; z-компонента, в интервале от до +d будет равна произведению вероятностей каждого из условий (событий) в отдельности: где , или ) – это число молекул в параллелепипеде со сторонами , , d , то есть в объёме dV= d , находящемся на расстоянии от начала координат в пространстве скоростей. Эта величина () не может зависеть от направления вектора скорости . Поэтому надо получить функцию распределения молекул по скоростям независимо от их направления, то есть по абсолютному значению скорости. Если собрать вместе все молекулы в единице объёма, скорости которых заключены в интервале от υ до υ+dυ по всем направлениям, и выпустить их, то они окажутся через одну секунду в шаровом слое толщиной dυ и радиусом υ. Этот шаровой слой складывается из тех параллелепипедов, о которых говорилось выше.

Объём этого шарового слоя . Общее число молекул в слое: Отсюда следует закон распределения молекул по абсолютным значениям скоростей Максвелла : где – доля всех частиц в шаровом слое объема dV, скорости которых лежат в интервале от υ до υ+dυ. При dυ = 1 получаем плотность вероятности , или функцию распределения молекул по скоростям : Эта функция обозначает долю молекул единичного объёма газа, абсолютные скорости которых заключены в единичном интервале скоростей, включающем данную скорость. Обозначим: и получим: График этой функции показан на рисунке. Это и есть распределение Максвелла . Или по-другому

.

Энтропия.

Термодинамическая энтропия S, часто просто именуемая энтропия, в химии и термодинамике является функцией состояния термодинамической системы. Понятие энтропии было впервые введено Рудольфом Клаузиусом, который определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общего количества тепла ΔQ к величине абсолютной температуры T (то есть изменение тепла при постоянной температуре): . Например, при температуре 0 °C, вода может находиться в жидком состоянии и при незначительном внешнем воздействии начинает быстро превращаться в лед, выделяя при этом некоторое количество теплоты. При этом температура вещества так и остается 0 °C. Изменяется состояние вещества, сопровождающееся изменением тепла, вследствие изменения структуры.

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так: ,где dS - приращение (дифференциал) энтропии, а δQ - бесконечно малое приращение количества теплоты. Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Энтропия – аддитивная величина, т.е. энтропия системы равна сумме энтропий отдельных её частей.

Больцман установил связь энтропии с вероятностью данного состояния . Позднее эту связь представил в виде формулы Планк: , где константа k = 1,38×10−23 Дж/К названа Планком постоянной Больцмана, а Ω - (термодинамическая вероятность) статистический вес состояния, является числом возможных микросостояний (способов) с помощью которых можно перейти в данное макроскопическое состояние. Этот постулат, названный Альберт Эйнштейном принципом Больцмана, положил начало статистической механики, которая описывает термодинамические системы, используя статистическое поведение составляющих их компонентов. Принцип Больцмана связывает микроскопические свойства системы (Ω) с одним из её термодинамических свойств (S). Согласно определению, энтропия является функцией состояния, то есть не зависит от способа достижения этого состояния, а определяется параметрами этого состояния. Так как Ω может быть только натуральным числом (1, 2, 3, …), то энтропия Больцмана должна быть неотрицательной - исходя из свойств логарифма.

Энтропия в открытых системах:

В силу второго начала термодинамики, энтропия Si замкнутой системы не может уменьшаться (закон неубывания энтропии ). Математически это можно записать так: , индекс i обозначает так называемую внутреннюю энтропию, соответствующую замкнутой системе. В открытой системе возможны потоки тепла, как из системы, так и внутрь неё. В случае наличия потока тепла в систему приходит количество тепла δQ1 при температуре T1 и уходит количество тепла δQ2 при температуре T2. Приращение энтропии, связанное с данными тепловыми потоками, равно:

В стационарных системах обычно δQ1 = δQ2, T1 > T2, так что dSo < 0. Поскольку здесь изменение энтропии отрицательно, то часто употребляют выражение «приток негэнтропии», вместо оттока энтропии из системы. Негэнтропия определяется таким образом как обратная величина энтропии.

Суммарное изменение энтропии открытой системы будет равно: dS = dSi + dSo.

К примеру, автомобиль, который трогается с места, движется ускоренно, так как наращивает скорость движения. В точке начала движения скорость автомобиля равняется нулю. Начав движение, автомобиль разгоняется до некоторой скорости. При необходимости затормозить, автомобиль не сможет остановиться мгновенно, а за какое-то время. То есть скорость автомобиля будет стремиться к нулю - автомобиль начнет двигаться замедленно до тех пор, пока не остановится полностью. Но физика не имеет термина «замедление». Если тело двигается, уменьшая скорость, этот процесс тоже называется ускорением , но со знаком «-».

Средним ускорением называется отношение изменения скорости к промежутку времени, за который это изменении произошло. Вычисляют среднее ускорение при помощи формулы:

где - это . Направление вектора ускорения такое же, как у направления изменения скорости Δ = - 0

где 0 является начальной скоростью. В момент времени t 1 (см. рис. ниже) у тела 0 . В момент времени t 2 тело имеет скорость . Исходя из правила вычитания векторов, определим вектор изменения скорости Δ = - 0 . Отсюда вычисляем ускорение:

.

В системе СИ единицей ускорения называется 1 метр в секунду за секунду (либо метр на секунду в квадрате):

.

Метр на секунду в квадрате - это ускорение прямолинейно движущейся точки, при котором за 1 с скорость этой точки растет на 1 м/с. Другими словами, ускорение определяет степень изменения скорости тела за 1 с. К примеру, если ускорение составляет 5 м/с 2 , значит, скорость тела ежесекундно растет на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина , которая равна пределу, к которому стремится среднее ускорение при стремлении промежутка времени к 0. Другими словами - это ускорение, развиваемое телом за очень маленький отрезок времени:

.

Ускорение имеет такое же направление, как и изменение скорости Δ в крайне маленьких промежутках времени, за которые скорость изменяется. Вектор ускорения можно задать при помощи проекций на соответствующие оси координат в заданной системе отсчета (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела увеличивается по модулю, т.е. v 2 > v 1 , а вектор ускорения имеет такое же направление, как и у вектора скорости 2 .

Если скорость тела по модулю уменьшается (v 2 < v 1), значит, у вектора ускорения направление противоположно направлению вектора скорости 2 . Другими словами, в таком случае наблюдаем замедление движения (ускорение отрицательно, а < 0). На рисунке ниже изображено направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Если происходит движение по криволинейной траектории, то изменяется модуль и направление скорости. Значит, вектор ускорения изображают в виде 2х составляющих.

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.


У вектора тангенциального ускорения τ (см. рис. выше) направление такое же, как и у линейной скорости либо противоположно ему. Т.е. вектор тангенциального ускорения находится в одной оси с касательной окружности, являющейся траекторией движения тела.

Центростремительное ускорение - составляющая ускорения точки, характеризующая быстроту изменения направления вектора скорости для траектории с кривизной (вторая составляющая, тангенциальное ускорение , характеризует изменение модуля скорости). Направлено к центру кривизны траектории, чем и обусловлен термин. Термин «центростремительное ускорение» эквивалентен термину «нормальное ускорение ». Ту составляющую суммы сил, которая обуславливает это ускорение, называют центростремительной силой .

Наиболее простым примером центростремительного ускорения является вектор ускорения при равномерном движении по окружности (направленный к центру окружности).

Осестремительное ускорение в проекции на плоскость, перпендикулярную оси, предстаёт как центростремительное.

Элементарная формула [ | ]

a n = v 2 R {\displaystyle a_{n}={\frac {v^{2}}{R}}\ } a n = ω 2 R , {\displaystyle a_{n}=\omega ^{2}R\ ,}

где a n {\displaystyle a_{n}\ } - нормальное (центростремительное) ускорение, v {\displaystyle v\ } - (мгновенная) линейная скорость движения по траектории, ω {\displaystyle \omega \ } - (мгновенная) угловая скорость этого движения относительно центра кривизны траектории, R {\displaystyle R\ } - радиус кривизны траектории в данной точке. (Связь между первой формулой и второй очевидна, учитывая v = ω R {\displaystyle v=\omega R\ } ).

Выражения выше включают абсолютные величины. Их легко записать в векторном виде, домножив на e R {\displaystyle \mathbf {e} _{R}} - единичный вектор от центра кривизны траектории к данной её точке:

a n = v 2 R e R = v 2 R 2 R {\displaystyle \mathbf {a} _{n}={\frac {v^{2}}{R}}\mathbf {e} _{R}={\frac {v^{2}}{R^{2}}}\mathbf {R} } a n = ω 2 R . {\displaystyle \mathbf {a} _{n}=\omega ^{2}\mathbf {R} .}

Эти формулы равноприменимы как к случаю движения с постоянной (по абсолютной величине) скоростью, так и к произвольному случаю. Однако во втором случае надо иметь в виду, что центростремительное ускорение это не полный вектор ускорения, а лишь его составляющая, перпендикулярная траектории движения (или перпендикулярная вектору мгновенной скорости); В полный же вектор ускорения входит еще и тангенциальная составляющая (тангенциальное ускорение ) a τ = d v / d t {\displaystyle a_{\tau }=dv/dt\ } , сонаправленная касательной к траектории движения (или, что то же, мгновенной скорости) .

Мотивация и вывод [ | ]

То, что разложение вектора ускорения на компоненты - одну вдоль касательного к траектории вектора (тангенциальное ускорение) и другую ортогональную ему (нормальное ускорение) - может быть удобным и полезным, довольно очевидно само по себе. При движении с постоянной по модулю скоростью тангенциальная составляющая становится равной нулю, то есть в этом важном частном случае остается только нормальная составляющая. Кроме того, как можно увидеть ниже, каждая из этих составляющих имеет ярко выраженные собственные свойства и структуру, и нормальное ускорение содержит в структуре своей формулы достаточно важное и нетривиальное геометрическое наполнение. Не говоря уже о важном частном случае движения по окружности.

Формальный вывод [ | ]

Разложение ускорения на тангенциальную и нормальную компоненты (вторая из которых и есть центростремительное или нормальное ускорение) можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

Здесь использовано обозначение для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное

d l / d t = v {\displaystyle dl/dt=v\ }

и, из геометрических соображений,

d e τ d l = e n R . {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dl}}={\frac {\mathbf {e} _{n}}{R}}.} v 2 R e n {\displaystyle {\frac {v^{2}}{R}}\mathbf {e} _{n}\ }

Нормальным (центростремительным) ускорением. При этом его смысл, смысл входящих в него объектов, а также доказательство того факта, что он действительно ортогонален касательному вектору (то есть что e n {\displaystyle \mathbf {e} _{n}\ } - действительно вектор нормали) - будет следовать из геометрических соображений (впрочем, то, что производная любого вектора постоянной длины по времени перпендикулярна самому этому вектору, - достаточно простой факт); в данном случае мы применяем это утверждение для d e τ d t {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dt}}}

Замечания [ | ]

Легко заметить, что абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.

Приведенные здесь способы или их варианты могут быть использованы для введения таких понятий, как кривизна кривой и радиус кривизны кривой (поскольку в случае, когда кривая - окружность, R {\displaystyle R} совпадает с радиусом такой окружности; не слишком трудно также показать, что окружность в плоскости e τ , e n {\displaystyle \mathbf {e} _{\tau },\,e_{n}} с центром в направлении e n {\displaystyle e_{n}\ } от данной точки на расстоянии R {\displaystyle R} от неё - будет совпадать с данной кривой - траекторией - с точностью до второго порядка малости по расстоянию до данной точки).

Виды ускорений в СТО.

Итак, мы показали, что существует два вида измеримых скоростей. Кроме того, быстрота, измеряемая в тех же единицах, тоже очень интересна. При малых значениях все эти скорости равны.

А сколько же существует ускорений? Какое ускорение должно быть константой при равноускоренном движении релятивистской ракеты, чтобы космонавт всегда оказывал на пол ракеты одну и ту же силу, чтобы он не стал невесомым, или чтобы он не умер от перегрузок?

Введем определения разных видов ускорений.

Координатно-координатное ускорение dv /dt это изменение координатной скорости , измеренное по синхронизированным координатным часам

dv /dt=d 2 r /dt 2 .

Забегая вперед, заметим, что dv /dt = 1·dv /dt = g 0 dv /dt.

Координатно-собственное ускорение dv /dt это изменение координатной скорости, измеренное по собственным часам

dv /dt=d(dr /dt)/dt = gd 2 r /dt 2 .
dv /dt = g 1 dv /dt.

Собственно-координатное ускорение db /dt это изменение собственной скорости, измеренное по синхронизированным координатным часам , расставленным по ходу движения пробного тела:

db /dt = d(dr /dt)/dt = g 3 v (v dv /dt)/c 2 + gdv /dt.
Если v || dv /dt, тогда db /dt = g 3 dv /dt.
Если v перпендикулярно dv /dt, тогда db /dt = gdv /dt.

Собственно-собственное ускорение db /dt это изменение собственной скорости, измеренное пособственным часам , связанным с движущимся телом:

db /dt = d(dr /dt)/dt = g 4 v (v dv /dt)/c 2 + g 2 dv /dt.
Если v || dv /dt, тогдаdb /dt = g 4 dv /dt.
Если v перпендикулярно dv /dt, тогда db /dt = g 2 dv /dt.

Сравнивая показатели при коэффициенте g в четырех типах ускорений, записанных выше, замечаем, что в этой группе отсутствует член с коэффициентом g 2 при параллельных ускорениях. Но мы еще не взяли производные от быстроты. Это ведь тоже скорость. Возьмём производную по времени от быстроты, воспользовавшись формулой v/c = th(r/c):

dr/dt = (c·arth(v/c))" = g 2 dv/dt.

А если взять dr/dt, получим:

dr/dt = g 3 dv/dt,

или dr/dt = db/dt.

Следовательно, мы имеем две измеримые скорости v и b , и ещё одну, неизмеримую, но наиболее симметричную, быстроту r. И шесть видов ускорений, два из которых dr/dt и db/dt совпадают. Какое же из этих ускорений является собственным, т.е. ощущаемым ускоряющимся телом?



К собственному ускорению мы вернемся ниже, а пока выясним, какое ускорение входит во второй закон Ньютона. Как известно, в релятивистской механике второй закон механики, записанный в видеf =ma , оказывается ошибочным. Вместо него силу и ускорение связывает уравнение

f = m (g 3 v (va )/c 2 + ga ),

которое является основой для инженерных расчетов релятивистских ускорителей. Если мы сравним это уравнение с только что полученным уравнением для ускорения db /dt:

db /dt = g 3 v (v dv /dt)/c 2 + gdv /dt,

то заметим, что они отличаются лишь множителем m. То есть, можно записать:

f = m·db /dt.

Последнее уравнение возвращает массе статус меры инертности в релятивистской механике. Сила, действующая на тело, пропорциональна ускорению db /dt. Коэффициентом пропорциональности является инвариантная масса. Вектора силы f иускорение db /dt сонаправлены при любой ориентации векторов v иa , или b и db /dt.

Формула, записанная через ускорение dv /dt, не дает такой пропорциональности. Сила и координатно-координатное ускорение в общем случае не совпадают по направлению. Параллельными они будут лишь в двух случаях: если вектора v иdv /dtпараллельны друг другу, и если они перпендикулярны друг другу. Но в первом случае сила f =mg 3 dv /dt, а во втором - f =mgdv /dt.

Таким образом, в законе Ньютона мы должны использовать ускорение db /dt, то есть, изменениесобственной скоростиb , измеренное по синхронизированным часам.

Возможно с таким же успехом можно будет доказать, что f = mdr /dt, где dr /dt - вектор собственного убыстрения, но быстрота величина неизмеримая, хотя и легко вычисляема. Будет ли верно векторное равенство, сказать не берусь, но скалярное равенство справедливо в силу того, что dr/dt=db/dt и f =mdb /dt.

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение > – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости 2 .

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости 2 . Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов :

= τ + n

Касательное ускорение точки равно первой производной от модуля скорости или второй производной от расстояния по времени. Касательное ускорение обозначается – .

.

Касательное ускорение в данной точке направлено по касательной к траектории движения точки; если движение ускоренное, то направление вектора касательного ускорения совпадает с направлением вектора скорости; если движение замедленное – то направление вектора касательного ускорения противоположно направлению вектора скорости. (рис. 8.5.)

Нормальным ускорением точки называется величина, равная квадрату скорости, деленному на радиус кривизны.

Вектор нормального ускорения направлен от данной точки к центру кривизны, (рис.8.6.). Нормальное ускорение обозначается .

– нормаль к данной точке на траектории движения.

Полное ускорение точки определяется из векторного уравнения:

Зная направление и модули и , по правилу параллелограмма определим ускорение, соответствующее данной точке траектории движения. Тогда модуль ускорения определим:

.

Характер - это такое исполнение движений, при котором у наблюдающих остается впечатление о легкости или грузности, округлости или угловатости, силе или расслабленности, свободе или скованности движений и т. п. Все эти оттенки создаются благодаря своеобразному подбору движений, осуществляющих действие

8.поступательное движения твердого тела. траектория, скорости и ускорения точек твердого тела при поступательном движении .

Поступательным движением твердого тела называется такое движение, при котором отрезок прямой, соединяющий две любые точки тела, во все время движения остается себе параллельным (например, АВ ).

Теорема. При поступательном движении твердого тела траектории, скорости и ускорения всех его точек одинаковы .

Доказательство . Пусть отрезок АВ тела за время перемещается поступательно. Возьмем произвольную точку O и определим в пространстве положение отрезка АВ радиусами-векторами и. Обозначим: – радиус-вектор, определяющий положение точки В относительно точки А :

Вектор не изменяется ни по величине, ни по направлению, так как (по определению поступательного движения). Из соотношения (1) видно, что траектория точки В получается из траектории точки А параллельным смещением точек этой траектории на постоянный вектор. Таким образом, траектории точек А и В будут одинаковыми.

Возьмем производную по времени от равенства (1). Тогда

Следовательно, при поступательном движении твердого тела скорости и ускорения всех его точек в данный момент времени одинаковы.

Отметим, что сам факт поступательного движения не определяет ни закона движения, ни вида траектории. При поступательном движении точки тела могут описывать любые траектории (например, окружности ). Но все они будут одинаковы .

Дифференцируя левую и правую части приведенного выше векторного соотношения и учитывая, что dAB/dt=0, получаем drB/dt =drA/dt, или VB = VA. Дифференцируя по времени левую и правую части полученного соотношения для скоростей, находим dVB/dt=dVA/dt, или аB = аА. На основании вышеизложенного можно сделать следующий вывод: чтобы задать движение и определить кинематические характеристики тела, совершающего поступательное движение, достаточно задать движение одной его любой точки (по-
люса) и найти ее кинематические характеристики.

Как и материальная точка, тело при его поступательном движении будет иметь одну степень свободы при движении по направляющей, задающей траекторию его точкам; две степени свободы в случае движения на плоскости (при постоянном контакте с ней хотя бы одной точкой) и три степени свободы в общем случае движения в пространстве.

9. вращения твердого тела вокруг неподвижной оси. Задания движения, угловая скорость и угловая ускорение, скорость и ускорения точек тела .

2024 wisemotors.ru. Как это работает. Железо. Майнинг. Криптовалюта.