Передаточная функция. Учебное пособие: Переходные и импульсные характеристики электрических цепей Дискретизация входного сигнала и импульсной характеристики

Академия России

Кафедра Физики

Лекция

Переходные и импульсные характеристики электрических цепей

Орел 2009

Учебные и воспитательные цели:

Разъяснить слушателям сущность переходной и импульсной характеристик электрических цепей, показать связь между характеристиками, обратить внимание на применение рассматриваемых характеристик для анализа и синтеза ЭЦ, нацелить на качественную подготовку к практическому занятию.

Распределение времени лекции

Вступительная часть……………………………………………………5 мин.

Учебные вопросы:

1. Переходные характеристики электрических цепей………………15 мин.

2. Интегралы Дюамеля………………………………………………...25 мин.

3. Импульсные характеристики электрических цепей. Связь между характеристиками………………………………………….………...25 мин.

4. Интегралы свертки………………………………………………….15 мин.

Заключение……………………………………………………………5 мин.


1. Переходные характеристики электрических цепей

Переходная характеристика цепи (как и импульсная) относится к временным характеристикам цепи, т. е. выражает некоторый переходный процесс при заранее установленных воздействиях и начальных условиях.

Для сравнения электрических цепей по их реакции к этим воздействиям, необходимо цепи поставить в одинаковые условия. Наиболее простыми и удобными являются нулевые начальные условия.

Переходной характеристикой цепи называют отношение реакции цепи на ступенчатое воздействие к величине этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на ступенчатое воздействие;

– величина ступенчатого воздействия [В] или [А].

Так как и делится на величину воздействия (это вещественное число), то фактически – реакция цепи на единичное ступенчатое воздействие.

Если переходная характеристика цепи известна (или может быть вычислена), то из формулы можно найти реакцию этой цепи на ступенчатое воздействие при нулевых НУ

.

Установим связь между операторной передаточной функцией цепи, которая часто известна (или может быть найдена), и переходной характеристикой этой цепи. Для этого используем введенное понятие операторной передаточной функции:

.

Отношение преобразованной по Лапласу реакции цепи к величине воздействия представляет собой операторную переходную характеристику цепи:

Следовательно .

Отсюда находится операторная переходная характеристика цепи по операторной передаточной функции.

Для определения переходной характеристики цепи необходимо применить обратное преобразование Лапласа:

воспользовавшись таблицей соответствий или (предварительно) теоремой разложения.

Пример: определить переходную характеристику для реакции напряжение на емкости в последовательной -цепи (рис. 1):

Здесь реакция на ступенчатое воздействие величиной :

,

откуда переходная характеристика:

.

Переходные характеристики наиболее часто встречающихся цепей найдены и даны в справочной литературе.


2. Интегралы Дюамеля

Переходную характеристику часто используют для нахождения реакции цепи на сложное воздействие. Установим эти соотношения.

Условимся, что воздействие является непрерывной функцией и подводится к цепи в момент времени , а начальные условия – нулевые.

Заданное воздействие можно представить как сумму ступенчатого воздействия приложенного к цепи в момент и бесконечно большого числа бесконечно малых ступенчатых воздействий, непрерывно следующих друг за другом. Одно из таких элементарных воздействий, соответствующих моменту приложения показано на рисунке 2.

Найдем значение реакции цепи в некоторый момент времени .

Ступенчатое воздействие с перепадом к моменту времени обуславливает реакцию, равную произведению перепада на значение переходной характеристики цепи при , т. е. равную:

Бесконечно малое же ступенчатое воздействие с перепадом , обуславливает бесконечно малую реакцию , где есть время, прошедшее от момента приложения воздействия до момента наблюдения. Так как по условию функция непрерывна, то:

В соответствии с принципом наложения реакции будет равна сумме реакций, обусловленных совокупностью воздействий, предшествующих моменту наблюдения , т. е.

.

Обычно в последней формуле заменяют просто на , поскольку найденная формула верна при любых значениях времени :

.

Или, после несложных преобразований:

.

Любое из этих соотношений и решает задачу вычисления реакции линейной электрической цепи на заданное непрерывное воздействие по известной переходной характеристики цепи . Эти соотношения называют интегралами Дюамеля.

3. Импульсные характеристики электрических цепей

Импульсной характеристикой цепи называют отношение реакции цепи на импульсное воздействие к площади этого воздействия при нулевых начальных условиях.

По определению ,

где – реакция цепи на импульсное воздействие;

– площадь импульса воздействия.

По известной импульсной характеристике цепи можно найти реакцию цепи на заданное воздействие: .

В качестве функции воздействия часто используется единичное импульсное воздействие называемое также дельта-функцией или функцией Дирака.

Дельта-функция – это функция всюду равная нулю, кроме , а площадь ее равна единице ():

.

К понятию дельта-функция можно прийти, рассматривая предел прямоугольного импульса высотой и длительностью , когда (рис. 3):

Установим связь между передаточной функцией цепи и ее импульсной характеристикой, для чего используем операторный метод.

По определению:

.

Если воздействие (оригинал) рассматривать для наиболее общего случая в виде произведения площади импульса на дельта-функцию, т. е. в виде , то изображение этого воздействия согласно таблицы соответствий имеет вид:

.

Тогда с другой стороны, отношение преобразованной по Лапласу реакции цепи к величине площади импульса воздействия, представляет собой операторную импульсную характеристику цепи:

.

Следовательно, .

Для нахождения импульсной характеристики цепи необходимо применить обратное преобразование Лапласа:

Т. е. фактически .

Обобщая формулы, получим связь между операторной передаточной функцией цепи и операторными переходной и импульсной характеристиками цепи:

Таким образом, зная одну из характеристик цепи, можно определить любые другие.

Произведем тождественное преобразование равенства, прибавив к средней части .

Тогда будем иметь .

Поскольку представляет собой изображение производной переходной характеристики, то исходное равенство можно переписать в виде:

Переходя в область оригиналов, получаем формулу, позволяющую определить импульсную характеристику цепи по известной ее переходной характеристике:

Если , то .

Обратное соотношение между указанными характеристиками имеет вид:

.

По передаточной функции легко установить наличие в составе функции слагаемого .

Если степени числителя и знаменателя одинаковы, то рассматриваемое слагаемое будет присутствовать. Если же функция является правильной дробью, то этого слагаемого не будет.

Пример: определить импульсные характеристики для напряжений и в последовательной -цепи, показанной на рисунке 4.

Определим :

По таблице соответствий перейдем к оригиналу:

.

График этой функции показан на рисунке 5.

Рис. 5

Передаточная функция :

Согласно таблице соответствий имеем:

.

График полученной функции показан на рисунке 6.

Укажем, что такие же выражения можно было получить с помощью соотношений, устанавливающих связь между и .

Импульсная характеристика по физическому смыслу отражает собой процесс свободных колебаний и по этой причине можно утверждать, что в реальных цепях всегда должно выполняться условие:

4. Интегралы свертки (наложения)

Рассмотрим порядок определения реакции линейной электрической цепи на сложное воздействие, если известна импульсная характеристика этой цепи . Будем считать, что воздействие представляет собой кусочно-непрерывную функцию , показанную на рисунке 7.

Пусть требуется найти значение реакции в некоторый момент времени . Решая эту задачу, представим воздействие в виде суммы прямоугольных импульсов бесконечно малой длительности, один из которых, соответствующий моменту времени , показан на рисунке 7. Этот импульс характеризуется длительностью и высотой .

Из ранее рассмотренного материала известно, что реакцию цепи на короткий импульс можно считать равной произведению импульсной характеристики цепи на площадь импульсного воздействия. Следовательно, бесконечно малая составляющая реакции, обусловленная этим импульсным воздействием, в момент времени будет равной:

поскольку площадь импульса равна , а от момента его приложения до момента наблюдения проходит время .

Используя принцип наложения, полную реакцию цепи можно определить как сумму бесконечно большого числа бесконечно малых составляющих , вызванных последовательностью бесконечно малых по площади импульсных воздействий, предшествующих моменту времени .

Таким образом:

.

Эта формула верна для любых значений , поэтому обычно переменную обозначают просто . Тогда:

.

Полученное соотношение называют интегралом свертки или интегралом наложения. Функцию , которая находится в результате вычисления интеграла свертки, называют сверткой и .

Можно найти другую форму интеграла свертки, если в полученном выражении для осуществить замену переменных:

.

Пример: найти напряжение на емкости последовательной -цепи (рис. 8), если на входе действует экспоненциальный импульс вида:

Воспользуемся интегралом свертки:

.

Выражение для было получено ранее.

Следовательно, , и .

Такой же результат можно получить, применив интеграл Дюамеля.

Литература:

Белецкий А. Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986. (Учебник)

Бакалов В. П. и др. Теория электрических цепей. – М.: Радио и связь, 1998. (Учебник);

Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974. (Учебник);

Попов В. П. Основы теории цепей – М.: Высшая школа, 2000.(Учебник)

2.3 Общие свойства передаточной функции.

Критерий устойчивости дискретной цепи совпадает с критерием устойчивости аналоговой цепи: полюсы передаточной функции должны располагаться в левой полуплоскости комплексного переменного , что оответствует положению полюсов в пределах единичного круга плоскости

Передаточная функция цепи общего вида записывается, согласно (2.3), следующим образом:

где знаки слагаемых учитываются в коэффицентах a i , b j , при этом b 0 =1.

Свойства передаточной функции цепи общего вида удобно сформулировать в виде требований физической реализуемости рациональной функции от Z: любая рациональная функция от Z может быть реализована в виде передаточной функции устойчивой дискретной цепи с точностью до множителя H 0 ЧH Q ­, если эта функция удовлетворяет требованиям:

1. коэффициенты a i , b j - вещественные числа,

2. корни уравнения V(Z)=0, т.е. полюсы H(Z), расположены в пределах единичного круга плоскости Z.

Множитель H 0 ЧZ Q учитывает постоянное усиление сигнала H 0 и постоянный сдвиг сигнала по оси времени на величину QT.

2.4 Частотные характеристики.

Комплекс передаточной функции дискретной цепи

определяет частотные характиристики цепи

АЧХ, - ФЧХ.

На основании (2.6) комплекс передаточной функции общего вида запишется так

Отсюда формулы АЧХ и ФЧХ

Частотные характеристики дискретной цепи являются периодическими функциями. Период повторения равен частоте дискретезации w д.

Частотные характеристики принято нормировать по оси частот к частоте дискретезации

где W - нормированная частота.

В расчетах с приенением ЭВМ нормирование по частоте становится необходимостью.

Пример. Определить частотные характеристики цепи, передаточная функция которой

H(Z) = a 0 + a 1 ЧZ -1 .

Комплекс передаточной функции: H(jw) = a 0 + a 1 e -j w T .

с учетом нормирования по частоте: wT = 2p Ч W.

H(jw) = a 0 + a 1 e -j2 p W = a 0 + a 1 cos 2pW - ja 1 sin 2pW .

Формулы АЧХ и ФЧХ

H(W) =, j(W) = - arctg.

графики АЧХ и ФЧХ для положительных значений a 0 и a 1 при условии a 0 > a 1 приведены на рис.(2.5,а,б.)

Логарифмический масштаб АЧХ - ослабление А:

; . (2.10)

Нули передаточной функции могут распологаться в любой точке плоскости Z. Если нули расположены в пределах единичного круга, то характеристики АЧХ и ФЧХ такой цепи связаны преобразованием Гильберта и однозначно могут быть определены одна через другую. Такая цепь называется цепью минимально-фазового типа. Если хотябы один нуль появляется за пределами единичного круга, то цепь относится к цепи нелинейно-фазового типа, для которого преобразование Гильберта неприменимо.

2.5 Импульсная характеристика. Свертка.

Передаточная функция характеризует цепь в частотной области. Во временной области цепь характеризуется импульсной характеристикой h(nT). Импульсная характеристика дискретной цепи представляет собой реакцию цепи на дискретную d - функцию. Импульсная харакетеристика и передаточная функция являются системными характеристиками и связаны между собой формулами Z - преобразования. Поэтому импульсную реакцию можно рассматривать как некоторый сигнал, а передаточную функцию H(Z) - Z - изображение этого сигнала.

Передаточная функция является основной характеристикой при проектировании, если нормы заданы относитеольно частотных характеритик системы. Соответственно, основной характеристикой является импульсная характеристика, если нормы заданы во временной обрасти.

Импульсную характеристику можно определить непосредственно по схеме как реакцию цепи на d - функцию, или решением разностного уравнения цепи, полагая, x(nT) = d (t).

Пример. Определить импульсную реакцию цепи, схема которой приведена на рис.2.6,б.

Разностное уравнение цепи y(nT)=0,4 x(nT-T) - 0,08 y(nT-T).

Решение разностного уравнения в численном виде при условии, что x(nT)=d(t)

n=0; y(0T) = 0,4 x(-T) - 0,08 y(-T) = 0;

n=1; y(1T) = 0,4 x(0T) - 0,08 y(0T) = 0,4;

n=2; y(2T) = 0,4 x(1T) - 0,08 y(1T) = -0,032;

n=3; y(3T) = 0,4 x(2T) - 0,08 y(2T) = 0,00256; и т.д. ...

Отсюда h(nT) = {0 ; 0,4 ; -0,032 ; 0.00256 ; ...}

Для устойчивой цепи отсчеты импульсной реакции с течением времени стремятся к нулю.

Импульсную характеристику можно определить по известной передаточной функции, применяя

а. обратное Z-преобразование,

б. теорему разложения,

в. теорему запаздывания к результатам деления полинома числителя на полином знаменателя.

Последний из перечисленных способов относится к численным методам решения поставленной задачи.

Пример. Определить импульсную характеристику цепи на рис.(2.6,б) по передаточной функции.

Здесь H(Z) =.

Разделим числитель на знаменатель

Применяя к результату деления теорему запаздывания, получаем

h(nT) = {0 ; 0,4 ; -0,032 ; 0.00256 ; ...}

Сравнивая результат с расчетами по разностному уравнению в предидущем примере, можно убедиться в достоверности расчетных процедур.

Предлагается определить самостоятельно импульсную реакцию цепи на рис.(2.6,а), применяя последовательно оба рассмотренных метода.

В соответствии с определением передаточной функции, Z - изображение сигнала на выходе цепи можно определите как произведение Z - изображения сигнала на входе цепи и передаточной функции цепи:

Y(Z) = X(Z)ЧH(Z). (2.11)

Отсюда, по теореме о свертке, свертка входного сигнала с импульсной характеристикой дает сигнал на выходе цепи

y(nT) =x(kT)Чh(nT - kT) =h(kT)Чx(nT - kT). (2.12)

Определение выходного сигнала по формуле свертки находит применение не только в расчетных процедурах, но и в качестве алгоритма функционирования технических систем.

Определить сигнал на выходе цепи, схема которой приведена на рис.(2.6,б), если x(nT) = {1,0; 0,5}.

Здесь h(nT) = {0 ; 0,4 ; -0,032 ; 0,00256 ; ...}

Расчёт по (2.12)

n=0: y(0T) = h(0T)x(0T) = 0;

n=1: y(1T) = h(0T)x(1T) + h(1T) x(0T) = 0,4;

n=2: y(2T)= h(0T)x(2T) + h(1T) x(1T) + h(2T) x(0T) = 0,168;

Таким образом y(nT) = { 0; 0,4; 0,168; ... }.

В технических системах вместо линейной свертки (2.12) чаще применяется круговая или циклическая свертка.



Студент группы 220352 Чернышёв Д. А. Справка- отчет о патентном и научно- техническом исследовании Тема выпускной квалификационной работы: телевизионный приёмник с цифровой обработкой сигналов. Начало поиска 2. 02. 99. Окончание поиска 25.03.99 Предмет поиска Страна, Индекс (МКИ, НКИ) № ...



Несущими и амплитудно-фазовая модуляция с одной боковой полосой (АФМ-ОБП). 3. Выбор длительности и количества элементарных сигналов, используемых для формирования выходного сигнала В реальных каналах связи для передачи сигналов по частотно ограниченному каналу используется сигнал вида, но он бесконечен во времени, поэтому его сглаживают по косинусоидальному закону. , где - ...

Временные и частотные характеристики цепи связаны между собой формулами преобразования Фурье. По найденной в п. 2.1 переходной характеристике вычисляется импульсная характеристика цепи (рисунок 1)

Результат вычислений совпадает с формулой H(jщ), полученной в п. 2.2

Дискретизация входного сигнала и импульсной характеристики

Пусть принимается за верхнюю границу спектра входного сигнала.Тогда по теореме Котельникова частота дискретизации кГц. Откуда период дискретизации T=0.2мс

По графику, изображенному на рис.2, определяем значения дискретных отсчетов входного сигнала U 1 (n) для t моментов дискретизации.

Дискретные значения импульсной характеристики вычисляются по формуле

где T=0.0002 с; n=0, 1, 2,…., 20.

Таблица 3. Дискретные значения функции входного сигнала и импульсной характеристики

Дискретные значения сигнала на выходе цепи вычисляются для первых 8 отсчетов с помощью формулы дискретной свертки.



Таблица 4. Дискретный сигнал на выходе цепи.

Сопоставление результатов расчета с данными таблицы 1 показывает, что различие в значениях U 2 (t), вычисленные с помощью интеграла Дюамеля и путем дискретизации сигнала и импульсной характеристики отличаются на несколько десятых, что является допустимым отклонением при данных начальных параметрах.


Рисунок 9. Значение дискретного сигнала на входе цепи.


Рисунок 10. Значение дискретного сигнала на выходе цепи.


Рисунок 11. Значение дискретных отсчетов импульсной характеристики цепи H(n).

Эта динамическая характеристика применяется для описания одноканальных систем

с нулевыми начальными условиями

Переходная характеристика h(t) - это реакция системы на входное единичное ступенчатое воздействие при нулевых начальных условиях.

Момент возникновения входного воздействия

Рис.2.4. Переходная характеристика системы

Примеp 2.4:

Переходные характеристики для различных значений активного сопротивления в электрической цепи:

Чтобы определить переходную характеристику аналитически, следует решить дифференциальное уравнение при нулевых начальных условиях и u(t)=1(t).

Для реальной системы переходную характеристику можно получить экспериментальным путем; при этом на вход системы следует подавать ступенчатое воздействие и фиксировать реакцию на выходе. Если ступенчатое воздействие отлично от единицы, то характеристику на выходе следует разделить на величину входного воздействия.

Зная переходную характеристику, можно определить реакцию системы на произвольное входное воздействие с помощью интеграла свертки

С помощью дельта-функции моделируется реальное входное воздействие типа удара.

Рис.2.5. Импульсная характеристика системы

Примеp 2.5:

Импульсные характеристики для различных значений активного сопротивления в электрической цепи:



Переходная функция и импульсная функция однозначно связаны между собой соотношениями

Переходная матрица - это решение матричного дифференциального уравнения

Зная переходную матрицу, можно определить реакцию системы

на произвольное входное воздействие при любых начальных условиях x(0) по выражению

Если система имеет нулевые начальные условия x(0)=0 , то

, (2.17)

Для линейных систем с постоянными параметрами переходная матрица Ф(t) представляет собой матричную экспоненту

При небольших размерах или простой структуре матрицы A выражение (2.20) может быть использовано для точного представления переходной матрицы с помощью элементарных функций. В случае большой размерности матрицы A следует использовать существующие программы для вычисления матричного экспоненциала.

Передаточная функция

Наряду с обыкновенными дифференциальными уравнениями в теории автоматического управления используются различные их преобразования. Для линейных систем эти уравнения удобнее записывать в символической форме с использованием так называемого оператора дифференцирования

что позволяет преобразовывать дифференциальные уравнения как алгебраические и ввести новую динамическую характеристику - передаточную функцию.

Рассмотрим этот переход для многоканальных систем вида (2.6)

Запишем уравнение состояния в символической форме:

px = Ax + Bu ,

что позволяет определить вектор состояния

Она представляет собой матрицу со следующими компонентами:

(2.27)

где - скалярные передаточные функции , которые представляют собой отношение выходной величины к входной в символической форме при нулевых начальных условиях

Собственными передаточными функциями i -го канала называются компоненты передаточной матрицы , которые находятся на главной диагонали. Составляющие, расположенные выше или ниже главной диагонали, называются передаточными функциями перекрестных связей между каналами.

Обратная матрица находится по выражению

Пример 2.6.

Определить передаточную матрицу для объекта

Воспользуемся выражением для передаточной матрицы (2.27) и найдем предварительно обратную матрицу (2.29). Здесь

Транспонированная матрица имеет вид

a det(pI-A) = p -2p+1, .

где - транспонированная матрица. В результате получим следующую обратную матрицу:

и передаточную матрицу объекта

Чаще всего передаточные функции применяются для описания одноканальных систем вида

где - характеристический полином.

Передаточные функции принято записывать в стандартной форме:

, (2.32)

где - коэффициент передачи;

Передаточную матрицу (передаточную функцию) можно также определить с помощью изображений Лапласа или Карсона-Хевисайда. Если подвергнуть одному из этих преобразований обе части дифференциального уравнения и найти соотношения между входными и выходными величинами при нулевых начальных условиях, то получим ту же самую передаточную матрицу (2.26) или функцию (2.31).

Для того, чтобы в дальнейшем различать преобразования дифференциальных уравнений, будем использовать следующие обозначения:

Оператор дифференцирования;

Оператор преобразования Лапласа.

Получив одну из динамических характеристик объекта, можно определить все остальные. Переход от дифференциальных уравнений к передаточным функциям и обратно осуществляется с помощью оператора дифференцирования p.

Рассмотрим взаимосвязь между переходными характеристиками и передаточной функцией. Выходная переменная находится через импульсную функцию в соответствии с выражением (2.10),

Подвергнем его преобразованию Лапласа,

,

и получим y(s) = g(s)u(s). Отсюда определим импульсную функцию:

(2.33)

Таким образом, передаточная функция - есть преобразование по Лапласу от импульсной функции.

Пример 2.7.

Определить передаточную функцию объекта, дифференциальное уравнение которого имеет вид

Используя оператор дифференцирования d/dt = p, запишем уравнение объекта в символической форме

на основании которого определим искомую передаточную функцию объекта

Модальные характеристики

Модальные характеристики соответствуют свободной составляющей движения системы (2.6) или, другими словами, отражают свойства автономной системы типа (2.12)

Система уравнений (2.36) будет иметь ненулевое решение относительно , если

. (2.37)

Уравнение (2.37) называется характеристическим и имеет n -корней , которые называются собственными значениями матрицы A . При подстановке собственных значений в (2.37) получим

.

где - собственные векторы,

Совокупность собственных значений и собственных векторов представляет собой модальные характеристики системы .

Для (2.34) могут существовать лишь следующие экспоненциальные решения

Для получения характеристического уравнения системы достаточно общий знаменатель передаточной матрицы (передаточной функции) приравнять нулю (2.29).

Частотные характеристики

Если на вход объекта подавать периодический сигнал заданной амплитуды и частоты, то на выходе будет также периодический сигнал той же частоты, но в общем случае другой амплитуды со сдвигом по фазе. Взаимосвязь между параметрами периодических сигналов на входе и выходе объекта определяют частотные характеристики . Чаще всего их используют для описания одноканальных систем:

и представлена в виде

. (2.42)

Составляющие обобщенной частотной характеристики имеют самостоятельное значение и следующие названия:

Частотная характеристика по выражению (2.42) может быть построена на комплексной плоскости. В этом случае конец вектора, соответствующий комплексному числу , при изменении от 0 до прочерчивает на комплексной плоскости кривую, которая называется амплитудно-фазовой характеристикой (АФХ).

Рис.2.6. Пример амплитудно-фазовой характеристики системы

Фазо-частотная характеристика (ФЧХ) - графическое отображение зависимости сдвига по фазе между входным и выходным сигналами в зависимости от частоты,

Для определения числитель и знаменатель W(j ) разлагаются на множители не выше второго порядка

,

тогда , где знак "+" относится к i=1,2,...,l (числителю передаточной фунции), знак "-" -к i=l+1,...,L (знаменателя передаточной функции).

Каждое из слагаемых определяется выражением

Наряду с АФХ отдельно строят и все остальные частотные характеристики. Так АЧХ показывает, как пропускает звено сигнал различной частоты; причем оценкой пропускания является отношение амплитуд выходного и входного сигнала. ФЧХ показывает фазовые сдвиги, вносимые системой на различных частотах.

Помимо рассмотренных частотных характеристик в теории автоматического управления используются логарифмические частотные характеристики . Удобство работы с ними объясняется тем, что операции умножения и деления заменяются на операции сложения и вычитания. Построенная в логарифмическом масштабе АЧХ, называется логарифмической амплитудной частотной характеристикой (ЛАЧХ)

, (2.43)

Эта величина выражается в децибелах (дб). При изображении ЛАЧХ удобнее по оси абсцисс откладывать частоту в логарифмическом масштабе, то есть , выраженную в декадах (дек).

Рис.2.7. Пример логарифмической амплитудной частотной характеристики

В логарифмическом масштабе может быть изображена также и ФЧХ:

Рис.2.8. Пример логарифмической фазовой частотной характеристики

Пример 2.8.

ЛФХ, реальная и асимптотическая ЛАЧХ системы, передаточная функция которой имеет вид:

. (2.44)

.

Рис. 2.9. Реальная и асимптотическая ЛАЧХ системы

.

Рис. 2.10. ЛФХ системы

СТРУКТУРНЫЙ МЕТОД

3.1. Введение

3.2. Пропорциональное звено (усилительное, безынерционное)

3.3. Дифференцирующее звено

3.4. Интегрирующее звено

3.5. Апериодическое звено

3.6. Форсирующее звено (пропорционально - дифференцирующее)

3.7. Звено 2-го порядка

3.8. Структурные преобразования

3.8.1. Последовательное соединение звеньев

3.8.2. Параллельное соединение звеньев

3.8.3. Обратная связь

3.8.4. Правило переноса

3.9. Переход от передаточных функций к уравнениям состояния с пользованием структурных схем

3.10. Область применимости структурного метода

Введение

Для расчета различных систем автоматического управления их обычно разбивают на отдельные элементы, динамическими характеристиками которых являются дифференциальные уравнения не выше второго порядка. Причем различные по своей физической природе элементы могут описываться одинаковыми дифференциальными уравнениями, поэтому их относят к определенным классам, называемым типовыми звеньями .

Изображение системы в виде совокупности типовых звеньев с указанием связей между ними называется структурной схемой. Она может быть получена как на основе дифференциальных уравнений (раздел 2), так и передаточных функций. Данный способ и составляет суть структурного метода.

Предварительно рассмотрим подробнее типовые звенья, из которых состоят системы автоматического управления.

Пропорциональное звено

(усилительное, безынерционное)

Пропорциональным называется звено, которое описывается уравнением

а соответствующая ей структурная схема приведена на рис. 3.1.

Импульсная функция имеет вид:

g(t) = k .

Модальные характеристики (собственные значения и собственные векторы) для пропорционального звена отсутствуют.

Заменив в передаточной функции p на j получим следующие частотные характеристики:

Амплитудная частотная характеристика (АЧХ) определяется соотношением:

Это означает, что амплитуда периодического входного сигнала усиливается в k - раз, а фазовый сдвиг отсутствует.

Дифференцирующее звено

Дифференцирующим называется звено, которое описывается дифференциальным уравнением:

y = k . (3.6)

Его передаточная функция имеет вид:

Получим теперь частотные характеристики звена.

АФХ : W(j ) = j k , совпадает с положительной мнимой полуосью на комплексной плоскости;

ВЧХ : R() = 0 ,

МЧХ : I() = k ,

АЧХ : ,

ФЧХ : ,то есть для всех частот звено вносит постоянный фазовый сдвиг;

Интегрирующее звено

Это звено, уравнение которого имеет вид:

а затем к его передаточной функции

Определим частотные характеристики интегрирующего звена.

АФХ: ; ВЧХ: ; МЧХ: ;

она имеет вид прямой на плоскости (рис.3.9).

Характеристическое уравнение

A(p) = p = 0

имеет единственный корень, , который представляет собой модальную характеристику интегрирующего звена.

Апериодическое звено

Апериодическим называется звено, дифференциальное уравнение которого имеет вид

где , - коэффициент передачи звена.

Заменив в (3.18) d/dt на p , перейдем к символической записи дифференциального уравнения,

(Tp+1)y = ku, (3.19)

и определим передаточную функцию апериодического звена:)=20lg(k).



2024 wisemotors.ru. Как это работает. Железо. Майнинг. Криптовалюта.