Физические открытия 21 века. Самые важные научные открытия XXI века

Муниципальное бюджетное общеобразовательное учреждение

Суховская средняя общеобразовательная школа

Цивилизация и физика

XXI века

Пучкова Светлана Александровна

МБОУ Суховская СОШ

2013 г.

Цель работы:

Исследовать взаимосвязи физики с окружающим нас миром, используя различные средства и источники информации. В работе рассматривается значение физики в современном мире.

Изначально сдержанный, этот тезис был подтвержден в феврале следующего года Дж. Томсоном и его юным помощником Эрнестом Рутерфордом, который также изучал «урановые лучи». Постепенно наступала правда: соли урана были своего рода естественными пузырьками Крукса, хотя никто не мог сказать, почему.

В это время этот великий ученый и его жена Мари были неизвестны широкой публике, но те, кто знал о прогрессе физики, уже имели двух мужей как гениев. Пьер Кюри занимался кристаллографией, когда у мадам Кюри была идея исследовать свойства урана в различных соединениях этого элемента и в содержащихся в нем минералах. Некоторые из них показали еще большую активность, чем чистый уран. Нетрудно было сделать вывод об этом: эти минералы должны содержать неизвестное тело, более активное, чем уран.

Цели для педагога:

    воспитание культуры школьников,

    повышение интереса к физике, как предмету,

    выявление творческих способностей учащихся школы,

    приобщение школьников к повышению уровня своих знаний по физике,

    получение информации с помощью различных источников,

    привитие умения изобразить и показать свое видение данной проблемы с помощью компьютерной презентации,

    Пьер Кюри сразу понял, что его работа над кристаллографией может немного подождать и что было удобно работать с данными, собранными его женой. Пьер и Мари Кюри смогли установить очень скоро, что радио трансформируется в другие радиоактивные продукты, такие как гелий, чтобы окончательно закончить в инертном металле, свинце. Он достиг истинной трансмутации элементов, и это открытие произвело революцию в мире.

    Световые волны, гамма-лучи и рентгеновские лучи были, конечно же, фотонными излучениями. Отсутствие эфира и, следовательно, его вибраций было продемонстрировано гораздо раньше, благодаря мастерскому эксперименту. С помощью этого аппарата эфир можно было бы подтвердить или уничтожить.

    воспитание эстетического вкуса,

    формирование нравственных жизненных ориентиров и развитие интеллектуальных, коммуникативных и творческих способностей учащихся.

ВСТУПЛЕНИЕ

В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Если последняя является стабильной средой, которая передает вибрационные движения, волны световой волны или электрическую волну, можно было бы доверить движение двух лучей света, один из которых будет направлен в направлении трансляционная земля, другая перпендикулярна плоскости этого движения. Или иначе, абсолютное смещение нашего земного шара через эфир дополнением скорости, которая принесет пользу одному из лучей света, должна быть продемонстрирована. Теперь скорость Земли составляет около 30 км в секунду, а скорость света - 000 км в секунду.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

В этих условиях смещение интерференционных полос должно соответствовать крошечной разнице в стомиллионную долю, представляющую квадрат отношения скорости движения Земли и скорости света. Майкельсон, с помощью своего коллеги Морли. сделал гениальное устройство, состоящее из четырех зеркал, источника света и прецизионного интерферометра, о котором мы говорили ранее. Результат эксперимента был абсолютно отрицательным. Больше не требовалось утверждать, что эфира не существует. И оттуда родилась вся теория относительности.

Его сначала следует рассматривать как математика, но поскольку физика - это наука, которая становится все более математической, относительность была бы для нее источником плодотворных объяснений. Во-первых, поскольку во всей Вселенной нет фиксированной точки, следует признать, что мир, в котором мы живем, построен таким образом, что в движущейся системе невозможно доказать смещение этой системы, и тем более, скорость того же перемещения. К этому постулату, или, скорее, аксиоме, поскольку кажется само собой разумеющимся, Эйнштейн добавил, что независимо от того, какая система трансляции, с которой измеряется скорость света, эта скорость всегда сохраняет одно и то же числовое значение.

Научное познание неустанно движется вперед, и в физике, да и в других научных областях появляются все новые научно доказанные факты

Графен

Графен – модификация углерода, представляющая собой плоский «лист» графита толщиной в один атом, где атомы соединены в гексагональную двумерную кристаллическую решётку. Графен обладает великолепной электрической проводимостью, высокой теплопроводностью, исключительной прочностью и массой других удивительных свойств. Выделить и изолировать его не представлялось возможным из-за его крайней нестабильности. Однако именно это удалось Андрею Гейму и Константину Новосёлову в 2004 году.

В области астрономии введение ограниченной составляющей в целое, которое считалось бесконечным, немедленно навязывало бы понятие вселенной, границы которой всегда были мобильными, были недавно созданы на основе радиуса в десять миллиардов светлые годы. В физике приходилось заключать, что отсутствие эфира закончилось старыми законами классической кинематики и что понятие пространства, взятое в изоляции, уже не имеет никакого смысла. Это привело Эйнштейна к очень абстрактному понятию пространственно-временного континуума и к принятию физиками гипотезы, предложенной Риманом в прошлом столетии, и которая отрицала, что пространство не зависит от физических явлений, которые в нем развиваются, что обязательно сделало время пространством.

Графит, который мы знаем как сырье для грифелей карандашей, образуется из миллиардов таких слоев. Отделить один слой всегда считалось делом невозможным, и это было теоретически доказано еще семьдесят лет назад физиками Львом Ландау и Рудольфом Пайерлсом. Их доказательства основаны на той схеме, что подобных материалов существовать не может, поскольку силы взаимодействия атомов приводят к свертыванию их в трубочку. Как оказалось, графен стал исключением из этого правила.

Ядерная физика показала в наши дни, что это понятие было реальностью. В этих условиях электромагнитные явления были применены ко всем остальным, и их законы станут основными принципами механики. С формулировкой ограниченной теории относительности открывается путь к тезису, который Эйнштейн будет развиваться позже в форме теории обобщенной теории относительности. В то же время новая теория, вызывающая смущение, как теория относительности, разрушит красивое понятие непрерывности, на которое покоится классическая физика.

Теории Планка имеют такую ​​степень абстракции, что мы не можем объяснить их здесь, потому что для нее понадобится целая специальная глава, в которой будут использованы формулы и графики. Или иначе: свет или электричество не предоставляются природой в виде потока или жидкости, но, буквально, в небольших упаковках. Чтобы не упустить ничего, Планк позаботился о том, чтобы максимально точно определить размеры этих пакетов.

Интересно, что открытие, потрясшее научный мир было сделано самым невероятным и даже банальным способом. Изобретатели обратили внимание на то, что скотч, контактирующий с графитом, отрывает от него тонкие слои. Долгое время ленту просто выбрасывали вместе с прилипшими к ней частичками графита. Повторялось это до тех пор, пока ученых не осенила простая мысль, оказавшаяся гениальной. Исследовав под микроскопом графитный слой на ленте, ученые обнаружили, что его толщина составляет 1 атом и это уже не графит, а совершенно новый материал – графен. Свойства графена настолько уникальны, что его нельзя сравнить ни с одним материалом в мире. Он обладает проводимостью, прочностью, стабильностью и при этом является просто тканью, материей в буквальном смысле. Как любую ткань ее можно сгибать, растягивать, сминать и сворачивать. Но при этом она не рвется, так как является самой крепкой на Земле.

Поэтому обмен энергией между веществом и облучением осуществляется квантами. Это вызвало большой скандал, так как он заставил опрокинуть расчеты людей науки. Если свет был испусканием фотонов и электричества, то излучение электронов, как объяснить непрерывность, являющуюся законом волн?

Луи де Бройль думал, что этот предмет должен быть одним и тем же электроном, а не тем, что эфир слишком метафизичен. Если бы это было так, - говорит великий ученый, - мы должны думать, что материальные корпускулы, особенно электрон, следует воображать как сопровождаемые и в определенном смысле руководствуясь какой-то волной. Это компромиссное решение является основой новой доктрины, называемой волной.

С помощью внешнего электрического поля можно превратить графен либо в металл, либо в полупроводник. Стоит только начать работать с каким-то свойством графена, как получается что-то новое. Это удивительная многообещающая система.

В 2010 году была присуждена Нобелевская премия. Премия ученым присуждена "за новаторские эксперименты по исследованию двумерного материала графена"

С этого момента физическая реальность собирается улетучиваться в «математическую схему», чтобы использовать выражение Зоммерфельда, а наука, по мере ее развития, отступит дальше от «антропоморфизма ощущения». Он вычислил свою скорость и обнаружил, что он был очень близок к 000 км в секунду; то, предположив, что они состоят из корпускул, он попытался оценить массу и заряд этих.

Он смог установить, что отношение заряда к массе частицы не зависит от природы газа, содержащегося в ампуле, и металла электродов. «Я не вижу, - говорит он, - чтобы избежать вывода о том, что это обвинения в отрицательном электричестве, переносимые частицами материи». С тех пор термин электрон стал общественным достоянием. Устройство, которое он изобрел, было большой простотой: оно состояло из туманной камеры, в которой капли подвешенного масла поднимались или падали в соответствии с простой гравитацией или импульсом переменного магнитного поля.

Открытие Эриса

В январе 2005 года , ученый Майк Браун и его помощники на самом краю Солнечной системы обнаружили маленькую планету Эрис, что вызвало дискуссии среди ученых о том, каково же на самом деле определение планеты. Названа открытая планета Эрис – в честь богини раздора в греческой мифологии. Эрис изначально считалась 10-й планетой Солнечной системы, но позднее она и другие объекты, расположенные в поясе Койпера, объединили в новый класс: карликовые планеты. Эрис находится за пределами орбиты Плутона и примерно такого же размера (диаметр планеты 2 326 километров) как Плутон.

Отличное оптическое устройство позволило им удобно их соблюдать. Время от времени капелька зверски меняла скорость. Разве это не потому, что он захватил электрон? В этом предположении, поскольку масса капли и интенсивность напряжения были известны, теоретически было возможно вывести заряд электрона, а также его массу. Но электрон настолько мал, что капля, заряженная двадцатью двумя частицами, вела себя точно так, как если бы она была заряжена только одной. Выраженный в кулонах, заряд электрона включает восемнадцать нулей перед комой.

Что касается массы, вам нужно двадцать семь нулей до первого десятичного знака. Можно приложить усилия, которые должен был сделать физический инженер, чтобы достичь этих результатов, но электрон в любом случае не был мифом, хотя, по выражению Милликена, радиус волос по сравнению с электроном мой электрон примерно в десять миллиардов раз больше.

Научная картина планеты Эрис не была ясной, потому что расстояние от Земли к ней в 3 раза больше, нежели от Плутона к Земле.

После Эрис оказался слажен из скальных пород, окруженных толстой мантией льда. Карликовая планета отражает почти весь падающий на нее свет. Возможно, Эрис покрыт очень тонким слоем замерзшей атмосферы из твердого азота и метана, который может быть результатом замерзания по мере удаления планеты-карлика от Солнца при ее движении по вытянутой орбите.

Это излучение было не более чем выбросом протонов, ядерных частиц, вес которых равен одному из 840 электронов. Облучение Голдштейна содержало ядра чистого азота. Если разреженный газ в вашей трубке был водородом, его цвет был бы розовым, зеленоватым или серым, если бы это был оксид углерода. На самом деле Гольдштейн делал не что иное, как ионизацию газа в своей ампуле, т.е. разложение атомов этого газа на электроны и в протоны.

Томсон сделал эксперимент и закончил проецирование таинственных каналов на флуоресцентный экран, в котором они производили сцинтилляции того же типа, что и электроны. С помощью электромагнита экспериментатор мог отклонить облучение и собрать в той же параболе частицы с одинаковым атомным весом. Затем раздался большой сюрприз.

Эти важные новые наблюдения, сделанные с помощью относительно небольших телескопов, дали астрономам возможность измерить свойства Эрис лучше, чем раньше. Это еще один шаг, на пути к пониманию загадочных объектов в удаленных областях солнечной системы.

Управление протезами с помощью сигналов мозга

Между тем изучение естественной радиоактивности заключалось в том, чтобы заставить ученых совершить подвиг, о котором мечтали алхимики средневековья. Он заметил, что таким образом азот превращается в кислород. Впервые атом сломался, и его составляющие элементы породили еще одно простое тело. Трансмутация уже не была мечтой алхимика! Резерфорд вышел изящно, где Бэкон и Парацельс потерпели неудачу.

Другими словами, придерживаясь модели Эрнеста Резерфорда и Жана Перрена, сохраняя круговые кеплеровские орбиты как идеальный путь электронов, он приступил к созданию математически строгого значения всех возможных состояний этих мельчайших частиц. Тайна электричества только что была раскрыта.

Изобрели технологии, позволяющие человеку управлять протезами с помощью сигналов мозга. Почти девять лет в этой области предпринимались удачные и не очень попытки превратить неподвижный протез в полную имитацию здоровой человеческой руки или ноги.

В 2009 г. итальянец Пьерпаоло Петрузиелло научился контролировать свою биомеханическую "руку" с помощью электродов, посылавших сигнал мозгу. Он стал первым человеком, заставившим протез двигать силой мысли.

Опыт вскоре подтвердил точность этого блестящего применения теорий Планка. Оставим основание чистой теории, чтобы вернуться к распаду атома. Принцип, что в некоторых атомных бомбардировках есть некоторая массовая диссипация, и это в условиях, предусмотренных Нильсом Бором и Зоммерфельдом, приведет ученых к следам одновременно славным и опасным. На самом деле ядра образующихся элементов имеют массу меньше массы составляющих элементов.

Поэтому во время процесса есть что-то, что рассеивается. И если потеря массы эквивалентна аннигиляции одного грамма вещества, выделяемая энергия равна количеству тепла, достаточному для мгновенного кипения 200 миллионов литров воды. Ему все еще приходилось находить снаряд, способный эффективно разлагаться. Немцы Боте и Беккер и французский Фредерик Жолио и Ирине Жолио-Кюри изучали отклонение альфа-лучей, когда они пересекали тонкие слои материи, и было замечено, что альфа-частицы, бомбардирующие свет, но устойчивый металл, бериллий, парадоксальное облучение, способное разрушить самые сильные потенциальные барьеры и «свободно перемещаться по материи», как это было предсказано Резерфордом в нейтроне, была обнаружена атомная бомба и ядерная энергия.

В основе технологии находится очень тонкий и легкий электродный лист, внешне напоминающий обыкновенный пластырь, который, при помещении на голову человека способен улавливать мозговые волны и при помощи электродов транслировать их в электронные сигналы.

На протяжении почти месяца 27-летний Пьерпаоло Петрузиелло жил как бионический человек из научной фантастики. С кучей электродов, торчащих из его культи, он мог сам контролировать биомеханическую руку, связанную с его нервной системой при помощи мысли.

Петрузиелло потерял свою левую руку и предплечье в мотокатастрофе в 2006 году.

Для того чтобы стать первым человеком в мире, который может делать сложные движения своей биомеханической рукой, используя лишь ум, бразильцу по происхождению пришлось пережить две операции.

В ходе одной ему имплантировали четыре электрода в два нерва его оставшейся руки. А в результате другой операции, сделанной спустя месяц, эти устройства были удалены. Разработанные в Германии, институтом IBMT Institute Fraunhofer Gesellschaft, TF-Life (тонкопленочные продольно-имплантируемые внутрипучковые электроды ) были созданы для того, чтобы заставить автоматизированные части «чувствовать» себя естественным продолжением тела.

Биомехатронная рука была разработана инженерами Пизанской Высшей школы Святой Анны.

Действуя как мост между культей пациента и роботизированным протезом, эти электроды в основном работают как нейронные интерфейсы. Благодаря этим устройствам, мозг и периферические нервы передают и получают информацию из роботизированных конечностей без использования мускулатуры или органа чувств.

В будущем на базе такой системы ученые намерены создавать целые комплексы оборудования для инвалидов или парализованных людей

В качестве побочного эффекта имплантации сенсоров специалисты называют возможность мониторинга состояния человека. Например, по анализу мозговых волн можно точно определить надвигающийся приступ эпилепсии или иных негативных состояний, которым человек может быть подвержен.

Разработчики говорят, что в обычных условиях их система помещается на кору мозга, вблизи сегмента, отвечающего за моторные функции человека.

Свет из вакуума

В 2011 году стало открытие, что вакуум может испускать свет, если в него в полную темноту поместить зеркало. Для этого потенциальный источник света надо перемещать со скоростью, близкой к световой. Так шведские ученые из Гетеборга буквально из ничего создали материю (фотоны).

Существование этого эффекта было предсказано более 40 лет назад. В ходе эксперимента, ученым удалось захватить фотоны, которые беспрерывно появляются и исчезают в вакууме.

Данный эксперимент основан на одном из самых парадоксальных и, в то же время, одном из самых главных принципов квантовой механики, который гласит, что вакуум не является абсолютной пустотой. Вакуум наполнен частицами, которые постоянно возникают и исчезают в нем. После своего возникновения, они существуют в течение очень короткого промежутка времени, после чего снова исчезают. Поскольку их существование столь скоротечно, они получили название виртуальных частиц .

Ученые из университета Чалмерса, Кристофер Уилсон с коллегами, смогли превратить виртуальные фотоны в настоящий . Физик Мур еще в 1970 году предсказывал, что это должно произойти, если виртуальные фотоны отразятся от зеркала двигающегося почти со скоростью света. Феномен, известный под названием динамический Эффект Казимира, был впервые продемонстрирован в ходе блестящего эксперимента Чалмерских ученых .

"Поскольку невозможно заставить зеркало двигаться с такой скоростью, мы разработали другой способ, который позволил достичь того же эффекта", - сказал Пер Делсинг, профессор экспериментальной физики в Чалмерсе.

Роль зеркала исполнял СКВИД ( сверхпроводящий интерферометр ), который чрезвычайно чувствителен к магнитным полям. Изменяя направление магнитного поля несколько миллиардов раз в секунду, ученые заставили "зеркало" вибрировать со скоростью в 25 процентов от скорости света.

"В результате из вакуума возникли пары фотонов, которые мы измерили в форме микроволнового излучения", - сказал Пер Делсинг. "Мы определили, что эта радиация обладала именно теми свойствами, которые предсказывала квантовая теория в случае появления пар таким способом".

Вода на Марсе

О наличии воды на Марсе учёные спорят давно.

Среди образований, обнаруженных на поверхности Марса, замечены извилистые русла, долины, разветвленная система «притоков», которые свидетельствует о том, что в прошлом поверхность планеты бороздили мощные потоки воды

Российский прибор, установленный на марсоходе Curiosity , обнаружил на Марсе водосодержащий грунт. Под сухим слоем грунта в 20-30 см, где содержание воды не превышает 1%, находится грунт с относительно высоким содержанием воды (более 4% по массе). Одним из таких участков является кратер Гейла - Каменное гнездо, где марсоход изучал свойства грунта около месяца. Полученные данные подтверждают предположения ученых о наличии воды на Марсе.

Планируется, что анализ всех данных, полученных в результате работы научных приборов марсохода, включая российский прибор ДАН, позволит определить особенности эволюции кратера Гейла и выяснить, могла ли природная среда этого кратера быть благоприятной для примитивных форм внеземной жизни.

Ранее ученые Национального управления США по воздухоплаванию и исследованию космического пространства NASA сообщили, что исследовали состав обнаруженной воды и выяснили: она отличается от земной большим содержанием тяжелого изотопа водорода - дейтерия.

Также сообщается, что марсоход передал результаты анализа грунта Красной планеты и нашел там даже простейшие органические вещества . Ученые отнеслись к полученной информации осторожно: необходимо исключить то, что эти вещества мог занести на Марс сам аппарат. Однако надежда на то, что на планете была жизнь, все еще остается.

Ожидается, что марсоход проработает на планете еще 1,5 года, времени для изучения всего кратера достаточно.

По словам руководителя проекта, ведущего специалиста Калифорнийского технологического института Джона Гротцингера, уже сделан ряд "сенсационных открытий". Однако ученый призывает еще раз проверить все полученные данные.

Впрочем, Д.Гротцингер подтвердил, что марсоходом найдены знакомые элементы и соединения, такие как перхлораты (хлор, водород и углерод). По его словам, прилетевший на Марс 6 августа 2012г. аппарат Curiosity стоимостью 2,5 млрд долл. начал выдавать действительно уникальную информацию.

В ноябре 2011г. с мыса Канаверал была запущена двухступенчатая ракета-носитель Atlas V с марсоходом Curiosity. После восьмимесячного полета он успешно совершил посадку в кратере Гейла в южной части Красной планеты, а затем передал на Землю первый цветной снимок Марса. Срок службы мобильной лаборатории составит один марсианский год (686 земных дней).

Большой адронный коллайдер (англ. Large Hadron Collider; LHC) - это ускоритель заряженных частиц на встречных пучках, предназначенный для разгона протонов и тяжёлых ионов (ионов свинца) и изучения продуктов их соударений . Коллайдер построен в научно-исследовательском центре Европейского совета ядерных исследований (фр. Conseil Européen pour la Recherche Nucléaire; CERN) на границе Швейцарии и Франции.Руководитель проекта – британский ученый, Линдон Эванс.

    Большим назван из-за своих размеров: длина основного кольца ускорителя составляет 26 659 м;

    Адронным - из-за того, что он ускоряет адроны, то есть частицы, состоящие из кварков

    Коллайдером (англ. collide - сталкиваться) - из-за того, что пучки частиц ускоряются в противоположных направлениях и сталкиваются в специальных точках столкновения.

Большой адронный коллайдер – кольцевой туннель, расположенный на глубине 100 м под землей (проходит под территориями Швейцарии и Франции). В нем разгоняются до околосветовых скоростей и сталкиваются лоб в лоб пучки элементарных частиц – протонов. В результате рождаются новые элементарные частицы, которые регистрируются четырьмя гигантскими, высотой с пятиэтажный дом, детекторами.

БАК является самой крупной экспериментальной установкой в мире. В строительстве и исследованиях участвовали и участвуют более 10 тыс. учёных и инженеров из более, чем 100 стран

Большой адронный коллайдер выключил свои разгонные блоки в рамках подготовки к ремонту, который продлится два года.

БАК, находящийся в Европейском центре ядерных исследований (ЦЕРН) в Швейцарии - прославился в первую очередь тем, что с его помощью в конце 2012 года были получены доказательства существования бозона Хиггса .

Однако этот ускоритель никогда не работал на полную свою мощность из-за технических дефектов, обнаруженных вскоре после его первого включения.

Ремонтные работы, которые продлятся до конца 2014 года, должны вывести коллайдер на проектную мощность.

1734 электромагнита ускорителя были выключены утром в четверг, но только к утру в субботу они нагреются до комнатной температуры, что позволит приступить к их инспекции.

Именно тогда начнется беспрецедентный период модернизации БАК, который уже получил обозначение "Долгий ремонт-1".

Планируется увеличить энергию столкновения протонов с нынешних 8 ТэВ до 13-14 ТэВ и установить дополнительное оборудование на детекторах ALICE, ATLAS, CMS, LHCb.

Общая модернизация

"Мы успешно работали с ускорителем, но только на половинной энергии, так как электромагниты могут справиться только с половиной подаваемого на них проектного напряжения", - сообщил Тони Уайдберг, физик из Оксфордского университета, который работает с детектором ATLAS.

В сентябре 2008 года в ходе испытаний магнитной системы произошла авария, в результате которой БАК вышел из строя. Один из электрических контактов между сверхпроводящими магнитами расплавился под действием возникшей из-за увеличения силы тока электрической дуги, которая пробила изоляцию гелиевой системы охлаждения.

Это привело к деформации конструкций, загрязнению внутренней поверхности вакуумной трубы частичками металла, а также выбросу около 6 тонн жидкого гелия в туннель протяженностью 27 км. Ремонт коллайдера занял остаток 2008-го и большую часть 2009 года.

" После этой аварии наш план состоял в том, чтобы продолжить исследования, а затем закрыть коллайдер на длительный ремонт для восстановления электрических контактов и общей модернизации ", - заявил Тони Уайдберг.

Помимо установки нового оборудования на всех четырех детекторах ускорителя, модернизации подвергнется система вентиляции туннеля.

В конце 2014 года начнутся испытания модернизированного ускорителя, после чего эксперименты на нем возобновятся в феврале или марте 2015 года.

В прошлом году ученые объявили о вероятном открытии бозона Хиггса - частицы, благодаря которой остальные частицы обретают массу.

Главным достижением работы БАК стало получение им в конце 2012 года доказательства существования бозона Хиггса.

Открытие бозона Хиггса признано научным прорывом 2012 года.

Бозон Хи́ггса- , элементарный. По построению, хиггсовский бозон является 4 июля представители сообщили, что на обоих основных детекторах наблюдалась новая частица с массой около 125-126 . Есть веские основания считать, что эта частица является бозоном Хиггса.

В 1964 году Хиггс предсказал обнаружение частицы, определяющей наличие массы у материи. Позже за этой частицей закрепилось название «бозон Хиггса» или «частица Бога». В июле 2012 года ученые Европейского центра ядерных исследований (CERN) объявили об открытии частицы, имеющей характеристики бозона Хиггса.

«Сначала я и предположить не мог, что открытие будет сделано при моей жизни, так как мы не имели ни малейшего представления, каким именно образом эта частица может влиять на массу, - признался 83-летний британский исследователь в связи с открытием ученых CERN. - Я ждал этого очень долго».

Согласно стандартной модели, бозон Хиггса возникает под влиянием поля Хиггса, которое придает материи массу. Это поле невозможно уловить приборами, и единственным доказательством его существования должно стать открытие этого бозона. Как считают физики, после Большого взрыва, положившего начало Вселенной 13,7 миллиарда лет назад, сила, порождающая бозон Хиггса, дала начало образованию галактик, звезд и планет из изначального хаоса.

По мнению ученых, обнаружение этой частицы может стать крупнейшим открытием в области знаний о законах Вселенной за последние десятилетия. Поиск бозона Хиггса был одной из главных целей строительства Большого адронного коллайдера - гигантского ускорителя элементарных частиц, на котором работают ученые из CERN..

Если бы бозон Хиггса не удалось обнаружить, это доказало бы ограниченность стандартной модели строения вещества. В результате возникла бы необходимость поиска альтернативной теории происхождения массы в соответствии с так называемой новой физикой .

Вице-президент РАН Ж. АЛФЕРОВ, директор Физико-технического института имени А. Ф. Иоффе (г. Санкт-Петербург)

В январе 2000 года в Санкт-Петербурге прошла конференция "Российское естествознание на пороге третьего тысячелетия", организованная администрацией города и Международной Соросовской программой образования в области точных наук (ICCEP). Конференция, созванная специально для учителей общеобразовательных школ - число подобных конференций, проведенных за пять лет в 80 городах России, насчитывает без малого четыре сотни (!) - дала возможность непосредственного общения с величинами научного мира и коллегами из высших учебных заведений, с тем чтобы учителя из первых рук могли узнать о новейших достижениях в физике, химии, математике и биологии, услышать мнение ведущих ученых относительно свершенного в уходящем столетии и о путях возможного прорыва в будущем. И услышанное - пересказать ученикам.

Выступая на открытии конференции в Смольном с приветственным словом от имени Российской академии наук, ее вице-президент Ж. И. Алферов сказал, что, по его мнению, "будущее России определится не Богом и не верой в Бога, не верой в президента и его доброй волей, а научным потенциалом страны, развитием науки и образования". В этой связи помощь, которую американский меценат Дж. Сорос оказывал российской науке и образованию в трудное для них время, трудно переоценить. И дело тут не в сумме денег, потраченной за шесть лет существования программы ICCEP на те или иные гранты, а в том, что эти гранты выделялись не только (а точнее сказать, не столько даже) выдающимся ученым на проведение перспективных исследований, но в первую очередь преподавателям вузов, учителям общеобразовательных школ, лицеев, аспирантам, студентам - словом, тем, от кого зависит, чтобы не иссяк интерес к науке, чтобы "не прервалась связь времен". "И я надеюсь, - сказал в заключение Жорес Иванович Алферов, - что наша талантливая молодежь в XXI веке будет работать в подавляющем большинстве случаев в нашей стране".

Представляем вашему вниманию лекцию академика Ж. И. Алферова, члена редакционного совета журнала "Наука и жизнь", прочитанную в рамках Соросовской конференции в Петербурге. В ней дается обзор достижений физики - главной науки уходящего столетия, а также оцениваются ее перспективы в будущем веке.

Работающему научному сотруднику чрезвычайно сложно, а скорее всего просто не под силу предсказать то, какой будет целая область науки в следующем столетии.

Это сподручнее сделать писателям-фантастам, и на замечательных романах Жюля Верна многие из нас выросли. Научный же работник обременен грузом реальных и конкретных знаний, которые не позволяют ему делать очень смелые предсказания. Хотя в свое время Альберт Эйнштейн разъяснил, как делаются крупные открытия. Он сказал, что подавляющее большинство людей знает, что это невозможно. Затем находится один человек, который не знает, вот он и делает открытие.

Поэтому большую часть своей лекции я посвящу тому, что произошло в физике за почти истекшее XX столетие, ну а в той области, в которой работаю сам, позволю себе некие экстраполяции.

Двадцатое столетие называют веком войн и социальных революций, что совершенно справедливо, и Россия здесь получила, как говорится, сполна, больше, чем многие другие страны. Но вместе с тем XX столетие называют еще и веком физики, и это тоже правильно. Но я бы назвал его веком квантовой физики, поскольку именно квантовая физика определила лицо уходящего века.

Недавно журнал "Тайм" провел опрос, кого из жителей планеты можно признать олицетворившим XX век, и титул человека столетия с подавляющим преимуществом получил Альберт Эйнштейн - основной создатель (если говорить об индивидуальностях) квантовой физики.

Но говоря о том, что наш век есть столетие квантовой физики, мы должны понимать, что произошло это отнюдь не случайно и что революционные изменения в естествознании формировались во второй половине XIX столетия и были связаны, как и всегда, с практической деятельностью человека. Вообще вся современная наука сравнительно молода: она насчитывает примерно лет триста, ибо основателями современного естествознания, современной физики можно считать Исаака Ньютона, Галилео Галилея и Рене Декарта. Они сформировали классическую механику и классическую физику.

В конце XIX столетия благодаря техническому прогрессу - и прежде всего распространению электрического освещения и развитию светотехники - возник кризис естествознания - потребовалось четко обосновать особенности спектров излучения нагретых тел. Из исследования этих особенностей и родилась, по большому счету, современная квантовая физика.

В 1900 году Макс Планк, твердо стоявший на позиции классической физики и не желавший от нее уходить, предложил для объяснения именно спектров излучения идею кванта.

Между прочим, я горжусь тем, что почти 50 лет своей жизни отдал работе в одном из самых замечательных научных учреждений Петербурга, России и мира - Физико-техническом институте имени Абрама Федоровича Иоффе. А вот такое сочетание - физико-технический институт, насколько мне известно, впервые появилось в Германии в 80-е годы прошлого столетия, когда Вернер Сименс, создатель знаменитой одноименной фирмы, основал в Берлине институт, состоявший из двух отделов: физического и технического; физический занимался фундаментальными исследованиями, а технический - совершенствованием ламп накаливания. И вот в этом институте было очень много сделано для возникновения и обоснования квантовой теории.

Конечно, решающее слово было сказано Альбертом Эйнштейном, предложившим в 1905 году квантовое объяснение фотоэффекта. Именно за квантовую теорию фотоэффекта, а не за теорию относительности ему в 1922 году была присуждена Нобелевская премия по физике. Потому что эта работа А. Эйнштейна сыграла ключевую роль в формировании квантовой теории.

Дальше я должен был бы назвать целый ряд блестящих имен, которым мы обязаны не только формированием квантовой физики, но и современным пониманием физических явлений: Поль Дирак, Вернер Гейзенберг, Морис де Бройль, Нильс Бор, Лев Давидович Ландау и многие, многие другие. Назвав эти имена, я хочу подчеркнуть, что квантовая физика в ее золотое время - 1920-1930-е годы - сформировала не только современную физическую теорию, но и современное научное мировоззрение людей, занимающихся естественными науками. Именно физические методы исследования, физический подход способствовали взлету и развитию как химии, так и биологии.

А сейчас я хотел бы остановиться на открытиях - сугубо экспериментальных, - основанных на квантовой теории, которые, с моей точки зрения, не только определили научно-технический прогресс во второй половине XX века, по-новому объяснив многие вещи в физике, но и привели к масштабным социальным изменениям и во многом предопределили современное развитие как передовых стран, так и практически всего населения земного шара.

И первым из этих трех открытий в физике я бы назвал открытие деления урана под воздействием нейтронного облучения, сделанное О. Ганом и Ф. Штрассманом в 1938 году.

Вообще первые десятилетия XX столетия (подчеркиваю, в экспериментальном отношении) были отмечены прежде всего работами в области ядерной физики, исследованиями радиоактивности, созданием современной теории атомного ядра. Но открытие деления урана предвиделось, я бы даже сказал, ожидалось, причем значительно больше, чем происшедшее в 80-е годы открытие высокотемпературной сверхпроводимости, и было оценено практически сразу. У нас, в Ленинграде, его оценили два выдающихся советских физика, сыгравших огромную роль и в развитии фундаментальной физики, и в нашем атомном проекте: Яков Борисович Зельдович и Юлий Борисович Харитон, которые выполнили блестящую работу по расчету цепных реакций на основе деления урана.

Вы знаете, что в 1939 году венгерский физик Лео Сцилард, живший тогда в США, уговорил Альберта Эйнштейна подписать письмо к президенту Ф. Рузвельту, в котором высказывалось предостережение - нацисты могут первыми изготовить атомную бомбу. В связи с этим выражалась настойчивая просьба об ассигновании собственных атомных исследований. Спустя непродолжительное время такое решение было принято, и начался известный Манхеттенский проект.

У нас в стране одним из инициаторов советского атомного проекта стал Георгий Николаевич Флеров, аспирант Игоря Васильевича Курчатова в Физико-техническом институте. В то время он был призван в армию, но при каждом удобном случае продолжал просматривать научные журналы. Обнаружив, что в них исчезли публикации, связанные с атомной тематикой (а это означало, что работы в этой области засекречены), он начал бомбардировать письмами высокое начальство, включая Сталина, доказывая необходимость развития советского атомного проекта.

Изучая рассекреченные и опубликованные материалы 1938-1943 годов, стенограммы заседаний, выступлений, понимаешь, какие у нас были замечательные физики: Абрам Федорович Иоффе, Игорь Васильевич Курчатов, Сергей Иванович Вавилов. Особенно восхищают меня А. Ф. Иоффе и С. И. Вавилов, потому что они работали в других областях (как известно, А. Ф. Иоффе - основоположник науки о полупроводниках, С. И. Вавилов - о люминесценции) и проблемы ядра были от них далеки. Но они прекрасно разбирались в этих вопросах!

Сегодня появилось много публикаций, утверждающих, что нашим ученым якобы ничего не нужно было делать - мол, все принесла разведка. Да, конечно, разведка сделала свое дело (и, прежде всего, по идеологическим соображениям, Клаус Фукс). Но на самом деле никакая разведка не могла бы нам дать атомное оружие и решить атомную проблему. Атомное оружие было создано в СССР благодаря тому, что уже в 1920-1930-е

годы у нас была своя, отечественная школа физиков, возникшая прежде всего благодаря А. Ф. Иоффе и так называемому "детскому саду папы Иоффе", который сформировался в Физико-техническом институте. Начало было положено еще в 1919 году, когда Абрам Федорович вместе со Степаном Прокофьевичем Тимошенко основали физико-механический факультет Политехнического института. Это было совершенно новое для того времени образовательное учреждение, которое ставило своей целью подготовку физиков с пониманием инженерных проблем и подготовку инженеров с очень глубокой физико-математической базой. Именно вот этот "детский сад папы Иоффе", из которого вышла целая гвардия трижды Героев Социалистического Труда, десятки академиков, и решил в будущем для нашей страны и атомную, и полупроводниковую, и многие другие проблемы.

Конечно, сегодня, особенно после чернобыльской катастрофы, много говорится об опасности использования атомной энергии. И в целом ряде стран предпринимаются меры для сокращения атомной энергетики. Хотя я не являюсь специалистом в этой области, но из моих бесед, чтения соответствующих работ и обсуждения данной проблемы на весьма представительном научном уровне я вынес убеждение, что в XXI веке атомная энергетика будет основным источником энергии не только в нашей стране, но и во всем мире. И прежде всего потому, что запасы горючих ископаемых кончаются. Современная же атомная энергетика экологически значительно безопаснее, чем угольные или даже мазутные электростанции. В области реакторной техники мы имеем очень хорошие наработки, и я уверен - так будет, потому что термоядерная энергетика еще довольно далека от своей реализации. Примечателен в этой связи такой случай. Когда руководителя английской термоядерной программы сэра Джона Кокрофта, лауреата Нобелевской премии, журналисты спросили, когда же можно ожидать промышленной реализации термоядерной энергетики, он ответил: "Через двадцать лет". Семь лет спустя на аналогичной конференции Кокрофту вновь был задан тот же вопрос, на который последовал прежний ответ: "Через двадцать лет". А когда удивленные журналисты воскликнули: "Но, позвольте, это же вы говорили и семь лет назад!", невозмутимо возразил: "Вы видите, я не меняю своей точки зрения".

Сегодня эта точка зрения изменилась. Полным ходом и при нашем участии осуществляется международный проект термоядерного реактора ИТЕР, однако начало промышленного использования термоядерной энергии относят к середине XXI столетия. То есть это будет не через двадцать, а через все пятьдесят лет. Поэтому надежды можно возлагать на атомную энергетику. Дай только Бог, чтобы ни в одной стране мира открытие О. Гана и Ф. Штрассмана не пришлось употребить так, как это было сделано президентом США Г. Трумэном в 1945 году при бомбардировках Хиросимы и Нагасаки.

Второе крупнейшее открытие в физике XX столетия - это, безусловно, создание транзистора.

Оно было сделано в 1947 году тремя выдающимися американскими физиками - Джоном Бардиным, Уолтером Браттейном и Уильямом Шокли в лаборатории компании "Белл телефон". Открытие стало следствием бурного развития физики полупроводников, полупроводниковой технологии и прежде всего радиолокации в годы Второй мировой войны.

Джон Бардин - один из самых выдающихся физиков XX столетия прежде всего в области физики конденсированного состояния, единственный за историю физики дважды нобелевский лауреат по физике в одной и той же области науки. Первую премию он получил в 1956 году вместе с У. Браттейном и У. Шокли за открытие транзистора, а вторую - в 1972-м вместе с Л. Купером и Дж. Шриффером за теорию сверхпроводимости, впервые давшую полное объяснение этому загадочному явлению, открытому Гейке Камерлинг-Оннесом в 1911 году в Голландии.





Нильс Бор и Абрам Федорович Иоффе. Москва, 1934 год.

Рабочий стол Отто Гана. Немецкий музей, Мюнхен. На таком столе проводились первые опыты по исследованию радиоактивных веществ.



Семинар А. Ф. Иоффе, 1916 год. Сидят (слева направо): П. И. Лукирский, А. Ф. Иоффе, Н. Н. Семенов; стоят: Я. Г. Дорфман, Я. Р. Шмидт, К. Ф. Нестурх, Н. И. Добронравов, М. В. Кирпичева, Я. И. Френкель, А. П. Ющенко, И. К. Бобр и П. Л. Капица.

1947 год: Джон Бардин, Уильям Шокли и Уолтер Браттейн рассматривают в микроскоп свой первый транзистор (показан на снимке вверху).

Серийный исследовательский атомный реактор, сконструированный в производственном объединении "Атомэнергоэкспорт". 1980-е годы.

Первые ЭВМ, появившиеся в конце 1940-х годов, работали на радиолампах, которые сильно грелись и имели тенденцию неожиданно перегорать.



Молекулярный квантовый генератор (мазер). 1955 год. Музей истории Московского государственного инженерно-физического института (технического университета).



И. Е. Тамм, Ф. Дайсон, Р. Пайерлс и В. Л. Гинзбург на Международной конференции по физике элементарных частиц. Москва, 1956 год.

Нильс Бор и Лев Давидович Ландау на "празднике Архимеда" в МГУ, 1961 год.

Академики Я. Б. Зельдович, Ю. Б. Харитон и Н. Н. Семенов.

Президиум Академии наук СССР присудил Джону Бардину свою высшую награду - медаль М. В. Ломоносова. И Джон Бардин, выступая на заключительном заседании Международной конференции по физике полупроводников в 1960 году, сказал: "Наука интернациональна, интернациональна физика, нет национальной физики. И физика полупроводников это доказывает очень ярко: она создана прежде всего Вильсоном и Моттом в Англии, Шоттки - в Германии, Иоффе и Френкелем - в СССР". 23 декабря 1947 года был продемонстрирован первый транзисторный усилитель, началась новая эра в электронике. А несколько позже появилась широчайшая научно-техническая область, приведшая к огромным социальным изменениям в мире.

На то, что транзистор появился на свет в Соединенных Штатах Америки, были вполне определенные причины, но нельзя забывать и того, что большой вклад в это выдающееся открытие человечества внесен физиками нашей страны.

Работы эти, кстати, начались за много лет до войны, и для их развития многое дали работы Олега Васильевича Лосева, гениального изобретателя из нижегородской радиолаборатории, рано умершего. В числе прочих открытий Лосева было создание кристаллического усилителя "кристадин Лосева", но, как говорится, дорого яичко к Христову дню. Когда открытия делаются слишком рано и уровень техники и технологии не готов к этому, они обычно "не проходят" и о них забывают.

Но интересен, например, и такой факт. Вице-президент крупнейшей компании "Белл телефон" Мелвин Келли, формируя группу для проведения исследований в 1945 году в области физики твердого тела и разработки новых технических средств для радиолокации, сформулировал ее основную задачу как проверку квантовой теории для конденсированного состояния. Группа была необычайно сильной. В нее вошли те трое, кто затем получил Нобелевскую премию, а также выдающийся физик Джеральд Пирсон и многие очень квалифицированные инженеры-электрохимики, механики и лаборанты. Сотрудниками группы были открыты новые физические явления, ставшие основой полевого транзистора и так называемого биполярного транзистора.

В 1958 году была построена первая интегральная схема. Она представляла собой пластину из монокристалла кремния площадью несколько квадратных сантиметров, на которой были получены два транзистора и RC-цепочки транзисторов. Современный микропроцессор со стороной, скажем, 1,8 сантиметра имеет 8 миллионов транзисторов. Если размеры первых транзисторов исчислялись долями миллиметра, то сегодня фотолитографические методы позволяют получать размеры 0,35 микрона. Это современный технологический уровень. В самом ближайшем будущем ожидается переход на размеры 0,18 микрона и через 5-7 лет - на 0,1 микрона.

Но интересно другое. С одной стороны, можно говорить, что это огромный технический прогресс, а с другой - чисто физически там не появилось никаких новых явлений: тот же полевой и биполярный транзистор и те же эффекты, которые были открыты еще в конце 1940-х годов. Однако именно эта технология, именно эти физические открытия стали основой всей современной микроэлектроники, а современная микроэлектроника изменила мир.

Я приведу лишь очень простой пример. До начала XX века Соединенные Штаты Америки были сельскохозяйственной страной. Это означает, что из четырех основных групп работающего населения - занятых в промышленности, сельском хозяйстве, сфере обслуживания и в сфере информатики (куда относятся и бухгалтеры) - самая большая группа работающих - те, кто трудились в сельском хозяйстве. К середине века США становятся индустриальной страной, потому что самой многочисленной группой были работающие в промышленности. А примерно с 1955 года Соединенные Штаты - уже постиндустриальная страна, так как самой большой группой работающего населения оказываются те, кто занимается получением и использованием информации.

Но вот что примечательно: в 1970 году численность этой группы достигла 50% работающего населения США, и с тех пор, за 30 лет, ее доля практически не изменилась. По-прежнему незначительно падает численность занятых в промышленности и сельском хозяйстве, растет число работающих в сфере обслуживания, однако в процентном к ним отношении число людей, занятых в информатике, остается прежним. И происходит это благодаря компьютерной революции.

Таким образом, открытие транзистора привело к изменению социальной структуры населения сначала развитых стран, а затем постепенно и всех остальных. Именно открытие транзистора дает нам право говорить о наступлении постиндустриального времени, времени информационного общества.

Ну и третье глобальное научное событие XX века, в чем-то примыкающее к созданию транзистора, - это открытие лазерно-мазерного принципа. И сделано оно было в 1954- 1955 годах практически одновременно Чарльзом Таунсом в США и Николаем Геннадиевичем Басовым и Александром Михайловичем Прохоровым в Физическом институте Академии наук СССР.

Если в рассказе о транзисторе я говорил лишь о вкладе, внесенном в его открытие советскими учеными школы "папы Иоффе", то честь открытия лазерно-мазерного принципа американские коллеги по праву разделяют с нашими великими соотечественниками. Об этом красноречиво говорит тот факт, что в 1964 году Нобелевскую премию по физике - а ее советским и российским ученым никогда не давали с легкостью - в силу неотвратимых обстоятельств на этот раз Таунс должен был разделить с Басовым и Прохоровым.


В Американской энциклопедии по поводу присуждения премии в 1964 году Н. Г. Басову и А. М. Прохорову были процитированы слова председателя Нобелевского комитета по физике. Он сказал, что научный мир был потрясен, узнав, что хорошо известный миру ученый Чарльз Таунс разделил Нобелевскую премию с двумя никому не известными русскими, которые с помощью своих примитивных средств сделали такое же открытие, как и на современном оборудовании Ч. Таунс. "Но, - сказал он в заключение, - работы, проведенные примитивными экспериментальными средствами, нужно поощрять ничуть не менее, чем открытия, которые производятся нажатием кнопки на современном дорогом оборудовании". Однако уважаемый председатель Нобелевского комитета ошибался, потому что экспериментальные средства в ведущих наших физических институтах - ФИАНе и Физтехе - в те времена практически не отличались от аналогичных средств в западных, в том числе и американских, лабораториях.

Все знают, что лазерная техника быстро развивается и очень широко применяется. Она стала мощным техническим и технологическим средством в медицине, с ее помощью делаются сложнейшие, но ставшие уже вполне привычными операции, производятся сварка и резка материалов. Не секрет, что существует лазерное оружие, позволяющее сбивать спутники. Вместе с тем лазер сегодня - это могучее информационное средство, и в области информатики полупроводниковые лазеры играют огромную роль.

В 1970 году американцами были созданы первые волокна с малыми потерями, а в нашей, физтеховской, лаборатории в это время впервые в мире появились полупроводниковые лазеры, работающие в непрерывном режиме при комнатной температуре на основе так называемых полупроводниковых гетероструктур. Так возникла волоконно-оптическая связь. Потом полупроводниковые лазеры стали широко применяться в известных ныне всем лазерных проигрывателях, где иголочкой, снимающей информацию, служит крохотный полупроводниковый лазер.

Так что, с одной стороны, лазеры, лазерная технология, сама по себе физика создания лазера - это торжество квантовой теории. А с другой - это могучие технические средства, которые, я повторяю, в значительной степени определили и прогресс, и изменение социальной структуры общества.

Ну а что мы можем ожидать сейчас?

В ближайшие десятилетия, видимо, не приходится ждать нового всплеска в объяснении явлений неживой природы - а физика занимается именно этой областью.

Дело в том, что вряд ли возможна революционная ситуация, аналогичная той, которая вызвала появление блестящей плеяды выдающихся ученых, наших и зарубежных, создавших современную квантовую физику. Для этого, повторю, должен был бы возникнуть некий кризис ведущего научного направления, а сегодня мы пока не видим, происходит ли он в квантовой теории. По-видимому - не происходит.

В свое время один из выдающихся британских физиков Рудольф Пайерлс, один из активных участников и Манхеттенского проекта в США, и создания атомного оружия в Великобритании, много работавший и у нас в стране, в Ленинградском и Харьковском физтехах (до войны он довольно долго жил в Советском Союзе), говоря о золотой плеяде физиков 1920-х годов, сказал мне: "Да, это было особое время, когда люди, так сказать, "первого класса" делали в науке гениальные работы, а люди "второго сорта" - работы первоклассные". Конечно, в этом сказалась величайшая скромность одного из выдающихся физиков XX столетия, но вместе с тем его слова в чем-то отразили ситуацию, сложившуюся в эпоху золотого времени для физики.

Я как-то посмотрел, что было сделано в то время у нас, в относительно небольшом коллективе Физико-технического института, и был потрясен масштабом исполненного. И это в еще разоренной после гражданской войны стране!

В 1921 году Абрам Федорович Иоффе, Алексей Николаевич Крылов и Дмитрий Сергеевич Рождественский выехали в первый раз после революции за рубеж. Абрам Федорович взял с собой Петра Леонидовича Капицу, который был тогда в очень тяжелом состоянии (у него в 1919 году погибли жена и двое малолетних детей), и он поступил на работу к Э. Резерфорду. А сам Иоффе на выделенные на ту поездку бюджетные средства закупил 42 ящика современного оборудования для Физтеха и оформил подписку почти на 50 научных журналов. Дай Бог, чтоб можно было и теперь совершать столь эффективные поездки.

Конечно, в наше время, повторяю, подобной революционной ситуации нет. Но тем не менее интересные и важные изменения, наверное, произойдут. И прежде всего в физике так называемых полупроводниковых гетероструктур, монокристаллических структур, в которой имеет место переход к различным по химическому составу веществам. Сегодня уровень этой технологии достиг того состояния, когда мы действительно умеем "укладывать" атом к атому и создавать принципиально новые структуры. Можно сказать так: мы экспериментально делаем объекты, на которых можно проверять задачки для учебника квантовой механики, самым разным образом строя эти экспериментальные объекты.

Но не только это. Мы создаем системы с пониженной размерностью электронного газа, когда электроны ограничены либо в плоскости, либо в одном измерении, в проволоке, либо вообще являются нуль-мерными структурами, это так называемые квантовые точки, рукотворные, искусственные атомы. Их свойства мы можем менять так, как нам хочется. И вот из этой области, безусловно, вырастет совершенно новое поколение электронных компонент, которые кардинально изменят информационные системы и без того совершенные сегодня.

Квантовые точки, квантовые проволоки, квантово-размерная физика конденсированного состояния - здесь такое богатство новых физических явлений, новых физических идей, что, я надеюсь, через 10-20 лет про эту область можно будет сказать, что она не только изменила технические информационные системы, но и подарила нам массу новых физических явлений.

Возможно, это лишь очень слабые ростки, которые проявляются именно при исследовании полупроводниковых гетероструктур. Возможно и появление некоторых революционных идей. Мне думается, что открытие так называемого дробного квантового холл-эффекта Хорстом Л. Штормером, Дэниелем Цуи и Робертом Лохлином, за которое им в 1998 году была присуждена Нобелевская премия по физике, может стать предтечей новых революционных идей в физике конденсированного состояния (см. "Наука и жизнь" № 1, 1999 г. - Прим. ред). В сильных магнитных полях и очень низких температурах был открыт ряд явлений, которые удалось объяснить, только предположив, что у квантовой жидкости должен быть компонент, обладающий дробным зарядом. То, что появляются экспериментальные факты, которые требуют привлечения подобных, совершенно не тривиальных объяснений, уже говорит о том, что не все в порядке в "этом королевстве" и что-то новое и интересное здесь может произойти.

С известным сожалением можно сказать, что открытая Алексом Мюллером и Георгом Беднорцем в 1986 году высокотемпературная сверхпроводимость почти ничего не дала практике и даже в общем существенно не изменила наших представлений. Можно говорить о том, что великая программа управляемого термояда, давшая массу интересных вещей для физики плазмы, не нашла пока реального практического применения. Но, наверное, и в этих областях что-то произойдет. А вот что касается квантово-размерных объектов физики конденсированного состояния, квантовых проволок и квантовых точек, то здесь совершенно точно можно ожидать изменения фундаментальных физических представлений, а стало быть, и нового реального взрыва в науке.

Записала Н. ДОМРИНА.



2024 wisemotors.ru. Как это работает. Железо. Майнинг. Криптовалюта.